Problem 1
What is the value of 

Solution
Problem 2
What is the area of the shaded figure shown below?![[asy] size(200); defaultpen(linewidth(0.4)+fontsize(12)); pen s = linewidth(0.8)+fontsize(8);  pair O,X,Y; O = origin; X = (6,0); Y = (0,5); fill((1,0)--(3,5)--(5,0)--(3,2)--cycle, palegray+opacity(0.2)); for (int i=1; i<7; ++i) { draw((i,0)--(i,5), gray+dashed); label("${"+string(i)+"}$", (i,0), 2*S); if (i<6) { draw((0,i)--(6,i), gray+dashed); label("${"+string(i)+"}$", (0,i), 2*W); } } label("$0$", O, 2*SW); draw(O--X+(0.15,0), EndArrow); draw(O--Y+(0,0.15), EndArrow); draw((1,0)--(3,5)--(5,0)--(3,2)--(1,0), black+1.5); [/asy]](https://latex.artofproblemsolving.com/1/7/1/1714dc248f12bd0640e9ec37023a14eddda46d9c.png)

Solution
Problem 3
At noon on a certain day, Minneapolis is 
 degrees warmer than St. Louis. At 
 the temperature in Minneapolis has fallen by 
 degrees while the temperature in St. Louis has risen by 
 degrees, at which time the temperatures in the two cities differ by 
 degrees. What is the product of all possible values of 

Solution
Problem 4
Let 
. Which of the following is equal to 

Solution
Problem 5
Call a fraction 
, not necessarily in the simplest form, special if 
 and 
 are positive integers whose sum is 
. How many distinct integers can be written as the sum of two, not necessarily different, special fractions?

Solution
Problem 6
The largest prime factor of 
 is 
 because 
. What is the sum of the digits of the greatest prime number that is a divisor of 
?

Solution
Problem 7
Which of the following conditions is sufficient to guarantee that integers 
, 
, and 
 satisfy the equation![\[x(x-y)+y(y-z)+z(z-x) = 1?\]](https://latex.artofproblemsolving.com/e/d/4/ed4334b3ae76f385d27c6bb80a0dbc73874bdf7d.png)
 and 
 and 
 and 
 and 

Solution
Problem 8
The product of the lengths of the two congruent sides of an obtuse isosceles triangle is equal to the product of the base and twice the triangle's height to the base. What is the measure, in degrees, of the vertex angle of this triangle?

Solution
Problem 9
Triangle 
 is equilateral with side length 
. Suppose that 
 is the center of the inscribed circle of this triangle. What is the area of the circle passing through 
, 
, and 
?

Solution
Problem 10
What is the sum of all possible values of 
 between 
 and 
 such that the triangle in the coordinate plane whose vertices are 
, 
, and 
 is isosceles?

Solution
Problem 11
Una rolls 
 standard 
-sided dice simultaneously and calculates the product of the 
 numbers obtained. What is the probability that the product is divisible by 

Solution
Problem 12
For 
 a positive integer, let 
 be the quotient obtained when the sum of all positive divisors of n is divided by n. For example,
What is 

Solution
Problem 13
Let 
 What is the value of![\[\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}?\]](https://latex.artofproblemsolving.com/5/c/b/5cb66360bc69b72e86eac3564c26bae7fd577bc9.png)

Solution
Problem 14
Suppose that 
, and 
 are polynomials with real coefficients, having degrees 
, 
, and 
, respectively, and constant terms 
, 
, and 
, respectively. Let 
 be the number of distinct complex numbers 
 that satisfy the equation 
. What is the minimum possible value of 
?

Solution
Problem 15
Three identical square sheets of paper each with side length 
 are stacked on top of each other. The middle sheet is rotated clockwise 
 about its center and the top sheet is rotated clockwise 
 about its center, resulting in the 
-sided polygon shown in the figure below. The area of this polygon can be expressed in the form 
, where 
, 
, and 
 are positive integers, and 
 is not divisible by the square of any prime. What is 
?
IMAGE

Solution
Problem 16
Suppose 
, 
, 
 are positive integers such that
and
What is the sum of all possible distinct values of 
?

Solution
Problem 17
A bug starts at a vertex of a grid made of equilateral triangles of side length 
. At each step the bug moves in one of the 
 possible directions along the grid lines randomly and independently with equal probability. What is the probability that after 
 moves the bug never will have been more than 
 unit away from the starting position?

Solution
Problem 18
Set 
, and for 
 let 
 be determined by the recurrence![\[u_{k+1} = 2u_k - 2u_k^2.\]](https://latex.artofproblemsolving.com/4/d/2/4d293888df7007ec4ada4b226a235ad82caf9d9f.png)
This sequence tends to a limit; call it 
. What is the least value of 
 such that![\[|u_k-L| \le \frac{1}{2^{1000}}?\]](https://latex.artofproblemsolving.com/6/c/d/6cdccfccc047b6c8985ceea4d5d27e3bc9e4bab3.png)

Solution
Problem 19
Regular polygons with 
, 
, 
, and 
 sides are inscribed in the same circle. No two of the polygons share a vertex, and no three of their sides intersect at a common point. At how many points inside the circle do two of their sides intersect?

Solution
Problem 20
A cube is constructed from 
 white unit cubes and 
 blue unit cubes. How many different ways are there to construct the 
 cube using these smaller cubes? (Two constructions are considered the same if one can be rotated to match the other.)

Solution
Problem 21
For real numbers 
, let
where 
. For how many values of 
 with 
 does![\[P(x)=0?\]](https://latex.artofproblemsolving.com/4/b/3/4b374c16213ce82b055126b5f24cbd9c127266ae.png)

Solution
Problem 22
Right triangle 
 has side lengths 
, 
, and 
.
A circle centered at 
 is tangent to line 
 at 
 and passes through 
. A circle centered at 
 is tangent to line 
 at 
 and passes through 
. What is 
?

Solution
Problem 23
What is the average number of pairs of consecutive integers in a randomly selected subset of 
 distinct integers chosen from the set 
? (For example the set 
 has 
 pairs of consecutive integers.)

Solution
Problem 24
Triangle 
 has side lengths 
, and 
. The bisector of 
 intersects 
 in point 
, and intersects the circumcircle of 
 in point 
. The circumcircle of 
 intersects the line 
 in points 
 and 
. What is 
?

Solution
Problem 25
For 
 a positive integer, let 
 be the sum of the remainders when 
 is divided by 
, 
, 
, 
, 
, 
, 
, 
, and 
. For example, 
. How many two-digit positive integers 
 satisfy 

Solution