0이 아닌 실수
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"><semantics><annotation encoding="application/x-tex">{\displaystyle p}</annotation></semantics></math>
와 양의 실수
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1},x_{2},\cdots ,x_{n}}"><semantics><annotation encoding="application/x-tex">{\displaystyle x_{1},x_{2},\cdots ,x_{n}}</annotation></semantics></math>
에 대해, 멱평균은 다음과 같이 정의된다.
- <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{p}(x_{1},\dots ,x_{n})=\left({\frac {1}{n}}\cdot \sum _{i=1}^{n}x_{i}^{p}\right)^{1/p}}"><semantics><annotation encoding="application/x-tex">{\displaystyle M_{p}(x_{1},\dots ,x_{n})=\left({\frac {1}{n}}\cdot \sum _{i=1}^{n}x_{i}^{p}\right)^{1/p}}</annotation></semantics></math>

이때
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"><semantics><annotation encoding="application/x-tex">{\displaystyle p}</annotation></semantics></math>
가 1일 때는
산술평균, -1일 때는
조화평균이 된다. 또한,
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"><semantics><annotation encoding="application/x-tex">{\displaystyle p}</annotation></semantics></math>
가 0에 가까워지는
극한의 경우에는
기하평균이 된다.
일반화된 f-평균 <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{f}(x_{1},\dots ,x_{n})=f^{-1}\left({\frac {f(x_{1})+\cdots +f(x_{n})}{n}}\right)}"><semantics><annotation encoding="application/x-tex">{\displaystyle M_{f}(x_{1},\dots ,x_{n})=f^{-1}\left({\frac {f(x_{1})+\cdots +f(x_{n})}{n}}\right)}</annotation></semantics></math>
은 멱평균을 더 일반화한 식으로, 이 식을 사용하면 극한 개념을 사용하지 않고 기하평균을 얻을 수 있다. 또한 이때
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{p}}"><semantics><annotation encoding="application/x-tex">{\displaystyle f(x)=x^{p}}</annotation></semantics></math>
인 경우에는 멱평균을 얻는다.
Wikipedia
댓글 없음:
댓글 쓰기