The following demonstrate proofs of various identities and theorems using pictures.
Summations
The sum of the first
odd natural numbers is
.
The sum of the first
positive integers is
.
Nichomauss' Theorem:
can be written as the sum of
consecutive integers, and consequently that
.
Here, we use the same re-arrangement as the first proof on this page (the sum of first odd integers is a square). Here's another re-arrangement to see this:
![[asy]defaultpen(linewidth(0.7)); unitsize(15); pen heavy = linewidth(2); /* global configurable variables */ int n2 = 4, n = floor(n2*(n2+1)/2); // number of colors, number of layers real h = 0.6; // scale factor of diagram pair shiftR1 = (n*h+1,0), // middle diagram shift offset shiftR2 = shiftR1 + (n*h+1,0); // right diagram shift offset int lvl(int i) { return ceil(((8*i+9)^.5-1)/2); } /* return level of square i */ pen colors(int i) { return rgb(0.5-lvl(i)/5,0.3+lvl(i)/7,1-lvl(i)/6); } /* shading */ /* draw tick line with label, segment between A and B */ void htick(pair A, pair B,pair ticklength = (0.15,0)) { draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } /* gradient triangle */ for(int i = 0; i < n; ++i){ for(int j = 0; j < 2*i+1; ++j){ filldraw(shift(shiftR1)*scale(h)*shift((j-i,-i))*unitsquare,colors(i)); /* if(j % lvl(i) == 0 && j != lvl(i)^2) draw(shift(shiftR1)*scale(h)*shift((j-i,-i))*((0,0)--(0,1)--(1,1)), heavy); if(j == 2*i) // right border draw(shift(shiftR1)*scale(h)*shift((j-i,-i))*((1,0)--(1,1)--(0,1)), heavy); */ } draw(shift(shiftR1)*scale(h)*shift((-i,-i))*((0,0)--(0,1)--(1,1)), heavy); draw(shift(shiftR1)*scale(h)*shift(( i,-i))*((1,0)--(1,1)--(0,1)), heavy); } // return kth triangular number (actually, 1+2+...+k) int tri(int k) { return ((int) (k*(k+1)/2)); } for(int i = 0; i < n2; ++i) { draw(shift(shiftR1)*scale(h)*shift((0-tri(i),0-tri(i)))*((0,1)--(2*tri(i)+1,1)), heavy); if(i % 2 == 0) { // vertical heavy lines for odd layers draw(shift(shiftR1)*scale(h)*((-i/2,1-tri(i))--(-i/2,-i-tri(i))), heavy); draw(shift(shiftR1)*scale(h)*((1+i/2,1-tri(i))--(1+i/2,-i-tri(i))), heavy); } else { // jagged heavy lines for even layers pair jag1 = (-(i+1)/2,-(i-1)/2-tri(i)), jag2 = (1+(i+1)/2,-(i-1)/2-tri(i)); draw(shift(shiftR1)*scale(h)*(jag1+(0,1+(i-1)/2) -- jag1 -- jag1+(1,0) -- jag1+( 1,-(i+1)/2)), heavy); draw(shift(shiftR1)*scale(h)*(jag2+(0,1+(i-1)/2) -- jag2 -- jag2-(1,0) -- jag2+(-1,-(i+1)/2)), heavy); } } draw(shift(shiftR1)*scale(h)*shift((-n2*(n2+1)/2,-n2*(n2+1)/2))*((1,1)--(2*n2*(n2+1)/2,1)), heavy); /* gradient square */ for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j) filldraw(shift(shiftR2)*scale(h)*shift((j,-i))*unitsquare, colors((i>j)?i:j)); for(int i = 0; i < n2; ++i) { draw(shift(shiftR2)*scale(h)*((0,1-tri(i))--(tri(i),1-tri(i))--(tri(i),1)),heavy); draw(shift(shiftR2)*scale(h)*shift(tri(i),-i-tri(i))*scale(i+1)*unitsquare,heavy); } /* outside boundary */ draw(shift(shiftR2)*scale(h)*shift((0,1-n))*scale(n)*unitsquare, heavy); /* n nxn squares for(int i = 0; i < n2; ++i){ filldraw(scale(h)*shift((-i,-(i+1)*(i+2)/2+1))*xscale(i+1)*yscale(i+1)*unitsquare, colors(floor(i*(i+1)/2)), heavy); } */ [/asy]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uMAVquGyyuOjW-mVC-befoCtjgWKBRtE-acVTHNzrU70fL6abhvRAl2uA2cfInFocokIK_dXVMEIkyKgS2snXR5bqkmVNyv9PQRpZzK0VsulDQRihXxFQSOazyr2ZsBH4gYSOb6JoTz8vudhgG-Fq59NWPxdEnA-VExA=s0-d)
Here, we use the same re-arrangement as the first proof on this page (the sum of first odd integers is a square). Here's another re-arrangement to see this:
This also suggests the following alternative proof:
An animated version of this proof can be found in this gallery.
The
th pentagonal number is the sum of
and three times the
th triangular number.
If
denotes the
th pentagonal number, then
.
If
The identity
Geometric series
The infinite geometric series
.
The infinite geometric series
.
The infinite geometric series
.
Another proof of the identity
.
The infinite geometric series
The arithmetic-geometric series
Geometry
The Pythagorean Theorem (first of many proofs): the left diagram shows that
Another proof of the Pythagorean Theorem (animated version).
Another proof of the Pythagorean Theorem; the left-hand diagram suggests the identity
A dissection proof of the Pythagorean Theorem.[6] (Cut-the-knot)
COMING: The last proof of the Pythagorean Theorem we shall present on this page, this one by dissection.
(Comment: we do not need to re-arrange the triangles to a trapezoid to see this, but this re-arrangement works due to alternate interior angles/angle bisector properties of the incenter.)
The area of a dodecagon is
The smallest distance necessary to travel between
In trapezoid
Varignon's theorem: the area of the outer parallelogram is twice the area of the quadrilateral and four times the area of the midpoint parallelogram, so the midpoint parallelogram of a (convex) quadrilateral has area
of the quadrilateral.
Proof for Volume of a Cone: http://www.mathematische-basteleien.de/wuerfel16.gif
Miscellaneous
The Root-Mean Square-Arithmetic Mean-Geometric Mean inequality,
There exists a homeomorphism, the stereographic projection, between the punctured hypersphere
and
for
.
Sum of arctangents formula:
References
- ^ MathOverflow
- ^ Wolfram MathWorld
- ^ Attributed to the Chinese text Zhou Bi Suan Jing.
- ^ This is more of a proof without words of the AM-GM inequality
; though the lengths of the segments labeled RMS and HM can easily be verified to have values of
, respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality.
AoPS
댓글 없음:
댓글 쓰기