Vieta's Formulas were discovered by the French mathematician François Viète.
Vieta's Formulas can be used to relate the sum and product of the roots of a polynomial to its coefficients. The simplest application of this is with quadratics. If we have a quadratic with solutions and , then we know that we can factor it as
A similar set of relations for cubics can be found by expanding .
We can state Vieta's formula's more rigorously and generally. Let be a polynomial of degree , so , where the coefficient of is and . As a consequence of the Fundamental Theorem of Algebra, we can also write , where are the roots of . We thus have that
The coefficient of in this expression will be the th symmetric sum of the .
We now have two different expressions for . These must be equal. However, the only way for two polynomials to be equal for all values of is for each of their corresponding coefficients to be equal. So, starting with the coefficient of , we see that
If we denote as the th symmetric sum, then we can write those formulas more compactly as , for .
Problems
Beginner
- Let and be the three roots of the cubic . Find the value of .
- Suppose the polynomial has three real roots , and . Find the value of .
Intermediate
Olympiad
AoPSWiki
댓글 없음:
댓글 쓰기