2019년 1월 23일 수요일

과학고-영재학교 진학 분석 서울 자치구별 5년간 실적 전수비교



#사례1. 서울 강남구에 거주하는 학부모 김모 씨는 자녀가 만 4세가 되던 해부터 과학고·영재학교 입학을 준비했다. 의대와 명문 이공계대 진학을 위한 ‘직선 코스’라고 봤기 때문이다. 유치원부터 각종 놀이와 사고력 수학 프로그램을 접하게 했고, 7세부터는 연산학원 등 3, 4개의 수학학원을 보내 본격적으로 초등 수학을 선행 교육했다. 앞으로는 계속 선행학습을 하면서 영재원 입학과 한국수학올림피아드(KMO) 출전 준비를 할 계획이다. 김 씨는 “6학년까지 고1 수학을 떼야 올림피아드 출전을 바라볼 수 있다”며 “사교육 인프라가 갖춰진 강남이 아니면 준비 자체가 힘들다”고 말했다.

#사례2.
 서울 송파구에서 중2 자녀를 키우는 박모 씨도 과학고 입시를 준비하고 있다. 박 씨는 당초 자사고 진학을 노려 왔지만 현 정부 들어 폐지 움직임이 가속화되자 유일한 ‘무풍지대’인 과학고 쪽으로 방향을 틀었다. 그는 “지금까지 ‘수학의 정석’을 세 번 정도 돌렸는데 이 정도는 다들 한다”며 “자유학기제라 내신 부담이 없는 중1 때 집중적으로 선행이 이뤄진다”고 전했다. 평소 수학·과학 학원비는 월 150만 원이지만 수업 시간이 길어지는 방학 땐 300만 원 이상이 든다.

최근 우수한 교육과 대입 실적을 원하는 학생과 학부모들 사이에서 과학고·영재학교에 대한 관심이 뜨겁다. 올해 외고 경쟁률은 대부분 2 대 1 미만이었던 반면 전국 20개 과학고·영재학교 입학경쟁률은 3.54 대 1로 전년도(3.09 대 1)보다 일제히 상승했다. 이에 동아일보는 종로학원하늘교육과 함께 서울지역 25개 자치구별 중학교 졸업생들의 과학고·영재학교 진학 실적을 전수 분석했다. 2014년부터 2018년까지 5년간 학교알리미에 공시된 학교별 진학 통계를 대상으로 했다.

분석 결과 이른바 강남, 목동 등 교육특구와 다른 지역 간의 격차가 최대 11.5배에 달하는 것으로 확인됐다. 교육계에서는 “중학교의 공교육이 대동소이한 상황에서 지역별 격차가 이 정도로 나타난 것은 과학고·영재학교 진학에 사교육이 결정적인 영향을 끼쳤다는 방증”이란 평가가 나왔다. 

○ 강남구-중구 진학 실적 격차 11.5배 

지난 5년간 서울에서 중학교를 졸업한 46만3319명의 고교 진학 상황을 분석한 결과 이 가운데 2574명(0.56%)이 과학고·영재학교에 진학한 것으로 나타났다. 과학고·영재학교에 가장 많이 진학한 곳은 졸업생 3만246명 중 382명이 진학한 강남구였다. 1만 명당 126명이 진학한 것으로 나타났다.

2위는 서초구로 1만 명당 99명이 과학고·영재학교에 진학했다. 3위 양천구는 1만 명당 81명이 진학했다. 5년간 200명 넘는 학생이 과학고·영재학교에 진학한 서울지역 자치구는 강남구 외에 양천구(286명) 노원구(285명) 송파구(255명) 서초구(216명) 등 5곳뿐이었다. 5년간 가장 많은 과학고·영재학교 진학자가 나온 상위 20개교를 뽑아본 결과 절반이 강남·양천구에 속했다. 

반면 과학고·영재학교 진학생이 가장 적은 곳은 중구로 졸업생 5268명 중 단 6명(1만 명당 으로 환산한 경우 11명 진학)만이 합격했다. 1위인 강남구와 1만 명당 합격자 비율로는 11.5배, 절대 수치로는 64배 차이가 났다. 중구 다음으로 진학생 비율이 낮은 곳은 동대문구(1만 명당 20명 진학), 중랑구(1만 명당 21명 진학), 금천구(1만 명당 22명 진학) 순이었다. 

○ 극복 안 되는 지역 간 사교육 격차 

전문가들은 지역별로 과학고·영재학교 진학 격차가 생기는 가장 큰 원인으로 △천양지차인 사교육 인프라 △입시 정보 비대칭 △동료 효과의 부재 등을 꼽았다. 과학고 입시학원들이 경제력이 높은 특정 지역에 몰려 있는 데다 관련 교육과 정보까지 이곳으로 쏠리다 보니 다른 지역은 지원할 엄두조차 못 내는 현상이 나타난다는 것이다.

한국과학창의재단 이환철 수학교육개발실장은 “과학고·영재학교 진학 실적이 낮은 지역에도 수학적 재능이 뛰어난 아이들이 분명 있을 것”이라며 “다만 중학교 공교육이 수준별 교육을 못하게 돼 있다 보니 (사교육 뒷받침이 안 되는 지역은) 적절한 발굴과 교육, 입시정보 제공이 이뤄지지 않았을 것으로 분석된다”고 말했다. 

입시컨설턴트 김은실 씨는 “수학올림피아드 준비 없이 서울지역 과학고에 붙는 학생은 0명이라고 봐야 한다”며 “전문 사교육 지원 없이는 도전 자체가 불가능하다”고 말했다. 

과학고·영재학교 입시가 면접 위주의 ‘미니 학종(학생부종합전형)’화되면서 중학교 때부터 내신뿐 아니라 각종 스펙 관리를 해야 하는 것도 비교육특구 학교에 불리한 요인이란 분석도 나온다. 입시멘토업체 대표인 이미애 씨는 “자기소개서에 교내활동이나 자신의 진로를 위해 공부한 탐구보고서를 담아야 한다”며 “학교에 전통적 과학동아리가 있는지, 4∼5명 규모로 자율동아리를 만들 수 있는지, 학교 선생님이 어느 정도 지원해주는지 등이 중요하다”고 말했다. 

실제로 서울에서 과학고·영재학교 진학 실적이 가장 낮은 중구에서는 수년 전만 해도 학교별로 최상위권 4, 5명 정도가 과학고 입시를 준비했는데 요즘은 찾아보기 어렵다. 중구의 A중학교 교감은 “학생 수가 적으니 사교육 시장도 작고, 우수한 학생끼리 상호 자극을 받기도 어려운 것 같다”고 말했다. 

임성호 종로학원하늘교육 대표는 “그간 지역불균형을 극복하기 위해 과학고 선발전형을 여러 번 바꿨음에도 격차는 더욱 커진 것으로 보인다”며 “초등학교 때부터 지역의 우수 학생들을 각 지역에 고르게 머물게 할 정책이 시급하다”고 말했다.

동아일보

운동하면 머리가 좋아진다! 학교체육 활성화 시켜야

요즘 자주 인용되는 뇌신경전달 물질 BDNF(Brain-Derived Neurotrophic Factor)가 운동하면 생성되고 활성화된다는 과학적 결과를 필자가 가장 먼저 국내에 보도했다. 지난해 ‘운동하면 치매를 예방 한다’는 칼럼을 썼을 때 살짝 인용했던 내용이지만 학교체육을 왜 활성화해야 하는지를 설명하기 위해 다시 인용한다.

필자는 미국의 시사주간지 ‘뉴스위크’가 2007년 3월 26일자에 보도한 ‘더 강하게, 더 빠르게, 더 현명하게(Smarter)’ 라는 주제의 커버스토리를 보고 BDNF을 알게 됐다. 뉴스위크는 당시 존 레이티 하버드메디컬스쿨 교수가 쓴 ‘불꽃: 운동과 뇌에 대한 혁명적인 신과학’(Spark: The Revolutionary New Science of Exercise and the Brain)이란 책을 소개했다. 레이티 박사는 이 책에서 “운동하면 머리가 좋아진다. 바로 BDNF가 생성되기 때문”이라고 설명하며 이를 뒷받침하는 과학적 결과물을 자세하게 설명했다. 과거 BDNF는 그저 신경성장 인자로만 인식됐을 뿐이었다. 운동과 BDNF의 상관관계를 제대로 분석한 책이었다. 필자는 아마존에서 바로 책을 주문해 다 읽었고, 각종 기획에 BDNF를 소개했고 2008년 1월 출간한 ‘스트레스 Zero 운동법’에도 자세히 소개했다.  
‘Spark’를 시발로 운동을 하면 머리가 좋아진다는 연구가 계속 쏟아지고 있다. 그런데 왜 우리나라에는 왜 공부 잘하는 운동선수가 드물까? 이유는 간단하다. 레이티 박사는 당시 책에서 “운동선수들이 도서관보다는 운동장이나 체육관에 오래 있기 때문”이라 분석했다. 머리는 좋은데 공부할 기회가 없었다는 얘기다.

운동을 잘하는 아이들에게는 어느 순간 ‘선수’라는 불필요한 딱지가 붙는다. 그리고 학업을 도외시하고 신체능력을 키우는데 집중하게 된다. 이는 학교나 사회가 조장하고 있기도 하다. 최근 ‘공부하는 운동선수’라며 운동선수에게 공부시키려는 움직임이 일고 있기는 하다. 하지만 운동 안하는 일반학생이 더 문제다.

다양한 연구결과 유산소 운동을 한 뒤 1~2시간 동안이 집중력이 가장 높은 것으로 나타났다. 실제 학교 현장에서는 ‘0교시 체육(본 수업 시작하기 전 체육활동)’을 실시해 효과를 보고 있는 곳도 있다. 하지만 실제 교육 현장은 대부분 다르게 돌아가고 있다. 우리 교육은 ‘지(智) 덕(德) 체(體)’를 강조하지만 현장에서는 이를 외면한다. 대학입학이라는 미명아래 아이들의 정서적인 발달을 키워줄 체육 음악 미술은 도외시 되고 있다. 한마디로 지(智)만, 즉 인지능력을 키우는 것만을 강조하는 교육이 이뤄지고 있다. 

우리나라는 ‘벤치마킹의 천국’이라고 할 정도로 선진국의 좋은 면을 받아들이고 있지만 교육은 늘 후진국을 벤치마킹하고 있다. 선진국의 경우 유치원에서부터 대학에 이르기까지 다양한 스포츠를 즐길 수 있도록 교육과정을 만들어 놨다. 우리나라에서 ‘사교육’ 문제를 거론하듯 선진국에서도 특정 집단을 중심으로 입시교육이 열풍을 이루고 있지만 교육과정만은 전인교육을 시키기 위한 기본적인 토대에서 만들어졌다.

 
일부 사회학자들이 “국가가 체육, 스포츠를 강조하는 것은 국가 이데올로기를 심어주고 일정한 방향으로 이끌어가기 위한 정치적인 야심 때문”이라고 비판하기도 한다. 단체 경기는 단결심과 협동심을 키워줘 애국심으로 무장하면 엄청난 힘을 발휘할 수 있다는 것 때문이다. 실제로 미국은 미식축구를 통해 다민족출신의 국민들을 하나로 뭉치게 했고 결국 세계 최강이 됐다. 그러나 미국을 포함해 영국, 독일, 프랑스, 일본 등은 체육과 스포츠 등을 강조해 강인한 국민들을 길러내 세계의 강국으로 자리매김하고 있는 것 또한 사실이다. 그만큼 체육과 스포츠가 국가 경쟁력에 큰 역할을 하고 있는 셈이다.

운동을 하면 머리도 좋아진다니 우리나라도 사고의 전환이 필요하다. 공부 잘하는 운동선수를 키울 게 아니라 모든 학생을 운동도 잘하고 공부도 잘하게 만들면 일석이조가 아닐까. 운동선수는 그런 학생 중에서 선발하면 된다. 이게 바로 선진국 교육시스템이다.  

 동아일보

두뇌발달에 가장 효과적인 체육수업이 사라진 이유

“아이들을 조화롭게 발달시켜야 하는 유치원 시기에 체육활동이 가장 필요한데 우리나라 교육 현장에서는 오히려 아이들의 움직임을 억압하고 있다.”

전선혜 중앙대 사범대 체육교육과 교수(58·유아체육)는 지난해 발족한 학교체육진흥회의 위원으로서 적극적으로 참여할 계획이다. 인간 발달에 가장 중요한 영유아 시기의 체육활동을 활성화할 필요가 있다고 판단했기 때문이다. 대한민국에서 학교교육은 유치원(어린이집 포함)부터 시작된다. 전 교수는 20년 넘게 유아체육을 연구해왔다. 

“아이들 발달 과정에서 가장 중요한 게 두뇌발달이다. 시기별로 적절하게 교육을 시켜야 뇌가 잘 발달한다. 아이들의 두뇌발달에 좋다고 오감교육이 강조된 것은 이미 오래전 일이다. 오감교육은 시각 청각 후각 미각 촉각 등을 따로 교육시키는 것보다 체육활동이 가장 효과적이다. 체육활동을 하기 위해 신체를 움직이면 오감이 총 동원된다. 그런데 우리나라는 교육과정상 유치원에서 신체활동이 중요하게 강조되어 있기는 하나 현실적으로는 교육이 잘 이루어지지 못하는 구조이고 초등학교 1,2학년 교육과정은 아예 체육활동이 전무한 상태이다.”  
 

전 교수는 “발달 단계 이론에 따르면 영유아기부터 지각과 인지 능력을 키워줘야 한다. 제대로 하지 않으며 발달 속도가 늦어진다. 모든 발달 단계가 신체활동하고 연계가 돼 있다”고 강조했다. 그는 “영유아 시기는 움직임을 맘대로 해야 한다. 움직임은 아이들이 그 시기에 해야 할 과업이다. 과거 학교에서 아이들 벌 줄 때 생각해봐라. 움직이지 말고 손들고 서 있으라고 하면 비비 꼬고 난리를 친다. 그 시기엔 움직이는 게 당연한 것이다”고 덧붙였다. 

많은 과학적 연구 결과 인간의 초기 발달 단계에서 움직임은 중요한 요소다. ‘신체활동을 포함하는 스포츠활동이 뇌세포의 생성이나 시냅스(뇌 신경세포를 이어주는 곳)의 가소성(Synaptic Plasticity·변화하고 적응할 수 있는 능력)에 중요한 영향을 끼친다(Ratey & Hagerman, 2008).’ ‘시냅스의 가소성은 운동의 지속성과 정도에 따라 영향을 받는다(Berchtold, Chinn, Chou, Kesslak, & Cotman, 2005; Hillman, Erickson & Kramer, 2008).’ ‘시냅스이 가소성이 향상되지 않으면 정서조절에 문제를 일으키고 이러한 자기통제의 어려움은 폭력으로 이어질 수 있다(조남기, 김택천, 2012).’

전 교수는 “최근 교육계에서도 놀이의 중요성 강조하고 있다. 놀이의 많은 부분이 신체활동을 의미한다. 하지만 제도가 못쫓아가고 있어 안타깝다”고 말했다.

“유아교육과정인 누리과정에 따르면 5개의 영역 중 신체활동건강영역을 가장 중요한 영역으로 해놓았다. 하지만 유치원 교사 임용시험에 신체활동에 관련된 과목이 없다. 유아교육 교육과정에도 신체활동은 없다. 신체활동을 구현하겠다고 이상적인 제도를 만들어 놓고 실질적으로 아이들을 가르칠 사람들이 교육도 못 받고 있는 실정이다.”

전 교수는 “이렇다보니 유치원에서는 활기차게 뛰고 달리는 대근활동 위주의 체육수업 보다는 가위로 종이오리기, 블록 쌓기 등 소근육 운동 위주의 신체활동을 하고 있다. 소근육 운동도 해야 하지만 대근육 운동 등 조화롭게 시켜야 한다. 안타까운 현실이다”고 말했다. 전 교수에 따르면 유치원 교육에 있어 매일 계획된 신체활동 1시간, 야외활동 1시간을 해야 한다는 가이드라인은 있다. 하지만 체육을 가르칠 수 있는 교사들이 없어 제대로 이뤄지지 않고 있다. 

전 교수는 “2015년 7차 교육과정 개정 전까지만 해도 유치원에서 체육선생님들을 초빙해 체육을 가르칠 수 있었다. 유치원에 체육 전문가가 없다보니 체육교사를 초청해 가르친 것이다. 하지만 이게 사교육을 조장한다고 체육 예술을 방과후 수업으로 빼면서 유치원에서는 아예 체육수업이 사라졌다. 체육선생님을 부를 때 비용을 지불하는 게 사교육을 조장한다는 것이다. 방과후 체육활동을 하고 싶은 아이들을 따로 모아서 하라는 것인데 유치원 끝났는데 어떤 부모가 체육활동을 시키겠는가. 다른 학원 보내기에도 바쁜데…”라며 안타까워했다. 

초등학교 1,2학년에도 체육교과는 없다. 즐거운 생활로 통합됐기 때문이다.

“초등학교 체육에 문제점이 많다는 것을 인식하고 2017년부터 초등학교에 스포츠전문 강사를 1명씩 파견하고 있다. 하지만 1,2학년엔 교육과정에 체육이 없어 혜택을 받지 못한다. 또 상급학년부터 체육을 시키기 때문에 1,2학년에게는 전문 강사의 지도를 받을 기회조차 가지 않는다.” 

전 교수는 “다행히 대한체육회가 유아체육의 중요성을 인식하고 있어 6년 전부터 유아체육활성화 지원사업을 하고 있다. 유치원에 무료로 영유아 체육전문강사를 파견하는 프로그램이다. 원하는 유치원에 파견하고 있는데 90% 이상이 만족하고 있다”고 말했다. 

 
유치원 체육전문 강사파견 프로그램은 200여명으로 시작해 현재는 400명을 주 1회 유치원에 파견하고 있다. 올 2월엔 420명을 교육시켜 유치원 현장에 지원할 예정이다. 전 교수는 “체육을 시키겠다는 의지가 있는 유치원에만 파견한다. 하지만 유치원 운영방침에 따라야하기 때문에 여러 가지 애로사항이 많다. 가장 중요한 것은 수업 시간이다. 현행 규정 상 12시 이전에 외부 강사가 수업을 하는 경우 해당 유치원이 제재를 받게 돼 있어 유치원도, 강사도, 학부모도 모두 불만을 제기하고 있다. 체육은 전문분야이며 특히 유아들을 대상으로 한 체육은 유아들의 발달에 대한 전문적 지식을 알고 지도를 해야 한다. 유아체육 전문가가 필요하다는 얘기다. 따라서 유아체육의 중요성을 알고 이를 해결하고자 한다면 제도상으로 전문 강사가 자유롭게 파견될 수 있도록 만들어야 한다”고 강조했다. 

전 교수는 “대한민국의 체육진흥정책은 ‘체육은 요람에서 무덤까지’를 표방하고 있다. 하지만 현장에선 전혀 다르게 돌아가고 있다. 이상과 현실이 동일해야 조화로운 교육을 할 수 있다. 우리 교육은 이상과 현실이 따로 돌아가고 있다”고 말했다



동아일보

우리아이 첫 학교생활 잘하려면… 7시 반 기상-책가방 싸는 연습부터


초등학교 1학년 예비소집 끝… 입학 전까지 준비해야 할 사항은?
10일자로 전국 초등학교의 2019학년도 1학년 예비소집이 종료된다. 이제 초등학교 입학까지 남은 날짜는 50여 일. 이 기간 동안 ‘무엇’을 해야 아이들의 원만한 초등생활을 도울 수 있을까? 교사들은 학업 준비보다 생활 습관 잡기, 학교와 선생님에 대한 긍정적 기대 갖기 등 생활적인 요소를 챙겨 보길 권한다. 남은 시간 관심을 기울일 주요 사항을 알아보자. 


● 늦잠 자는 아이라면 “7시 반에 깨워요”

사립초 등 일부 학교를 제외하면 요즘 초등학교의 등교시간은 대부분 오전 9시까지다. 수업 시작 전 차분히 학습 준비를 하고 친구들과도 대화하려면 적어도 8시 30∼40분에는 학교에 도착하는 게 좋다. 준비 시간을 1시간 정도 잡으면 7시 반 전후로 일어나야 한다는 의미다. 만약 이 시간보다 기상 시간이 늦는 아이라면 입학 때까지 매일 조금씩 시간을 앞당겨야 한다. 일찍 잠들 수 있도록 취침 시간을 앞당겨 정해 두는 것도 좋다. 


● 책가방 챙겨 보고 정리정돈 연습을 

학교에 입학하면 책과 준비물, 알림장 등 스스로 챙겨야 할 것이 늘어난다. 문제는 초1 아이들에게는 가방을 싸는 것조차 어려울 수 있다는 점이다. 미리 책가방을 구입해 책과 필통을 넣을 자리를 정해주고 선생님의 유인물을 챙겨올 얇은 플라스틱 파일을 넣어주면 아이에게 도움이 된다. 추후 학교에서 알려주는 준비물을 구입한 뒤에는 색연필 한 자루까지 모든 물건에 이름을 적도록 한다. 자신의 물건을 소중히 여기고 잃어버리지 않도록 강조한다. 학교 교실에 있는 개인 사물함도 제대로 정리할 수 있도록 습관을 잡아줘야 수업시간에 혼란을 겪지 않는다.


● 엄마·아빠와 미리 걸어 보는 안전한 등하굣길 

입학 전 엄마·아빠 등 보호자가 아이와 함께 학교 가는 길과 집에 오는 길을 걸어 보면 좋다. 어느 길이 안전한지 알려주고, 위험요인은 없는지 살펴볼 수 있도록 한다. 오가는 길에 생길 수 있는 돌발 상황에 대해 어떻게 대처하면 좋을지 이야기를 나눠 본다. 학교로 가는 길이 멀다면 길에 있는 큰 건물이나 표지판을 반복해서 인지시켜 아이가 길 찾기에 익숙해지도록 돕는다. 



● 마음 편히 화장실 가기 연습 

초1의 경우 40분 수업을 한 뒤 10분간 쉬는 시간을 갖는다. 어린이집이나 유치원에 다닐 때와는 달리 정해진 쉬는 시간에 용변을 해결해야 하다 보니 배변활동에 어려움을 겪는 아이가 많다. 긴 줄을 서 기다리는데 스트레스를 호소하거나 제때 용변을 해결하지 못해 수업 중 실수하는 상황도 생긴다. 아이들이 되도록 쉬는 시간 중 용변을 해결하되 급할 경우 부끄러워하지 말고 손을 들어 의사 표시를 할 수 있도록 일러주면 좋다. 

또 초등학교 화장실은 요즘 아이들이 쉽게 경험하지 못하는 재래식 변기가 있는 곳도 다수다. 양변기에 익숙하다 보니 쪼그려 앉는 데 불편을 느끼거나 발이 빠지기도 한다. 방향을 바꿔 앉거나 물 내리는 법을 모를 수 있으므로 미리 알려줄 필요가 있다. 휴지와 물티슈 등을 사용해 스스로 뒤처리를 할 수 있게 미리 연습하는 것도 필요하다. 여자아이들의 경우 치마나 딱 붙는 바지보다는 쉽게 내리고 올릴 수 있는 편안한 옷을 입히는 것이 좋다  

 

● 젓가락질부터 우유팩 따기까지 급식 적응하기

학교 급식은 1학년부터 6학년까지 먹는 음식이기 때문에 어린이집이나 유치원 때보다 매운 음식이 나올 수 있다. 김치 등을 남기거나 편식하지 않도록 집에서 미리 지도한다. 학교에서는 쇠젓가락을 사용하는 곳이 대부분이므로 젓가락질 연습도 해보도록 한다. 급식으로 나오는 우유나 요구르트 등을 스스로 딸 수 있도록 우유팩 입구 벌려 보기, 요구르트 뚜껑 따기도 시켜 본다. 식사를 빨리 마친 아이들은 남는 점심시간에 놀이를 하는 경우가 많으므로 친구들과 비슷한 속도로 밥을 먹으면 좋다. 


● 친구와 선생님에 대한 예절 일러두기

친구들과 선생님을 만나면 먼저 소리 내 인사할 수 있도록 반복해 지도한다. 어린이집이나 유치원 때보다 많은 친구들이 한 공간에서 생활하게 되므로 나와 다른 친구를 받아들이고 서로 배려하도록 가르친다. 최근에는 여러 학교에서 크고 작은 학교 폭력이 문제가 되고 있는 만큼 친구를 고의로 소외시키거나 놀리는 것, 괴롭히는 것은 폭력임을 분명하게 일러줘야 한다. 평소 짓궂은 표현이나 욕을 사용하는 아이라면 입학 전 반드시 엄격하게 가르쳐 습관을 고친다. 평소 화가 나면 몸부터 반응하거나 반대로 지나치게 소극적인 아이일 경우 친구를 때리거나 가만히 참지 말고 자신의 감정 표현을 ‘올바른 언어’로 분명하게 표현하게 일러준다.

동아일보

2019년 1월 11일 금요일

한국수학올림피아드 KMO

1. 개요

한국수학올림피아드는 대한민국의 중학생과 고등학생을 대상으로 하는 최고 권위의 올림피아드다. 2018년에 제 32회 대회가 열렸다.

국가올림피아드의 일반적인 역할과 같이, 궁극적으로는 국제수학올림피아드의 대표 선발을 위해 존재한다. 예전에는 고등학교, 대학교에서 KMO 실적으로 가산점 등을 많이 주던 때가 있었으나, 사교육의 과열을 막기 위해 교육부, KAIST 등에서 올림피아드를 실적으로 인정하는 것을 거부해서 현재는 거의 사라진 추세다. 그러나 학생들이나 학원가·학부모 등에는 영향을 많이 미치지는 못해서, 여전히 한국물리올림피아드한국화학올림피아드과 함께 일종의 과학고, 영재학교 등용문 역할을 하고 있다. 정말 이쪽 분야가 좋아서 하는 학생들도 있지만, 단순히 고등학교나 대학입시 때문에 스펙을 쌓기 위해 하는 학생들이 상당수다.

그래도 최근에는 참여율이 많이 저조해지고 있는 편이다. 아무래도 점점 대학 입시에의 비중이 줄어드는 영향이 큰 듯하다. IMO 대표로 나온 학생중에 "대표 안 될 거면 크게 도움 안되고, 대표 되더라도 내신 안좋으면 말짱 꽝" 이라고 얘기하는 학생도 있다.[1][2] 그러나 중등부의 경우에는 난이도가 급락하여 더 많은 학생들이 참가하고 있다. 이 역시 사교육의 과열을 막으려는 시도의 일환으로 보인다.[3]
2018년 KMO커트라인
금상80점
은상69점
동상59점
장려상52점

2. 형식[편집]

크게 중등부와 고등부 시험으로 나누어지며, 이 중 고등부가 위에서 설명한 국제수학올림피아드의 대표 선발에 관여한다.

중등부는 대부분 한국중학생물리대회, 한국중학생화학대회와 함께 고등학교 진학을 위한 스펙용으로 공부하고, 더 심화된 수학 공부를 할 수 있는 방법이기도 하다. 사실 고등부도 이름만 고등부지 대학교육을 받지 않은 만 20세 미만[4]이 참가 기준이다. 그러니까 초등학생이나 중학생이라도 수학능력이 탁월하다면 참가 가능하고, 실제로 수상까지 하는 중학생도 있긴 있다. 물론 이렇게 수상하는 중학생 중 대부분이 대치동 목동 학원가에서 나오기는 하지만 뭐 놀랄 일도 아니지

3. 학습 영역[편집]

올림피아드를 위해서는 공부해야 하는 수학이 있다. 그런데 이 공부해야 할 수학이 사실 좀 괴악한게, 전세계 교육과정에서 완전히 사라져버린 것들을 공부해야 한다! 흔히 올림피아드 수학이라고 부르는 것들로, 여기서 배우는 것들은 보통 고등학교에서 대학교 사이의(!) 수준이라고 볼 수 있는 것들. 특히 다른 건 몰라도 기하학만큼은 수학과에서조차 안 배운다.

수학과에서도 배우지 않는 기하학등은 왜 출제되는가...라고 생각할수 있지만, 논증기하의 풀이 과정 자체가 올림피아드 문제의 취지에 잘 맞는 편이다. 단, 기하는 보조정리를 얼마나 많이 외웠느냐가 문제를 풀수 있느냐의 여부를 가르며, 부등식만큼은 아니더라도 후천적인 학습이 중요하다. 올림피아드 공부를하며 다양한 문제들을 배우는 테크닉은 확실히 대학교 이후의 수학을 배우는 데에 크게 도움이 된다! 물론 학부에서 열심히 공부해서 따라잡을 수는 있지만, 아무래도 문제를 서술하는 방법이나 생각 등에서 한 단계 앞선 상태에서 시작하는 게 사실.[5]

논증기하학, 정수론, 함수론, 조합론, 부등식 등이며, 미적분학은 제외된다. 보통 이를 구체적으로 4개로 나누기도 한다. 다만 요즘에는 분야 간의 구별이 힘든 문제(정수+대수, 조합+기하, 정수+ 함수, 정수+ 조합 등등)들도 많다.

물론 이것들을 전문으로 가르치는 대치동의 학원도 있지만 본인의 의지만 있다면 혼자도 독학할 수도 있다. 'KMO BIBLE' 이나 '마두식의 정수론' 등의 교재가 유명하며 'KMO 이론의 모든 것'이라는 유튜브 채널은 KMO 이론에 대하여 재법 높은 퀄리티로 설명한다,
,

3.1. 대수[편집]

Algebra[6]

함수방정식, 산기코시만 알자 부등식이 메인이고, 분수식의 최대 최소, 함수, 구조법[7] 다항식, 수열 문제가 나오기도 한다. 클래식한 KMO는 전자의 두 분야가 많이 출제되지만 최근 전반적인 추세는 후자처럼 정형화되지 않는 문제를 내는 것이다. 세분화해서 나타낸 분야별로 특성이 상당히 다른 편인데, 함수방정식은 해석적 측면보다는 조합과 정수의 아이디어를 차용하는 경우도 많으며, 하나의 체계를 쌓아 나간다는 느낌이다. 그에 비해서, 부등식은 아무래도 해석적인 다양한 도구를 이용하여 문제 자체를 지향하여 푼다는 느낌이 강하다. 고등부로 올라갈수록 다양한 이론을 배우게 되며, 여기에서 SOS법[8], MV법[9], 이것을 더욱더 심화한 SMV법[10], UMV 등도 배우게 된다. 미적분을 사용하는 젠센 부등식도 있으며, 최후의 무기로 전미분도 존재한다. 하지만 역설적으로 이러한 기법들 때문에 부등식은 올림피아드에서 거의 사장되었다. KMO는 물론이고 IMO에서도 부등식 문제의 제 0의 출제기준은 앞서 서술된 고등기법들[11]로 문제가 풀리는지를 체크하는 것이다. [12]

함수의 경우 예외가 없는 한 주로 코시 방정식 노가다를 치게 된다. 또는 차분법이라는 걸 이용하게 되거나[13] 미분(고차식의 최대,최소를 구할 때)을 하거나 등등. 선행을 많이하면 노가다로 비교적 쉽게 풀 수 있기에 주입식에 강한우리나라 학생들이 전통적으로 잘하는 분야라고 일컬어진다. 물론 대수적인 재능이 따로 있는 학생도 분명 있긴 하다. 대수를 잘하려면 미적분은 일단 제쳐두고 식에 대한 발상이 중요한데, 딱히 이 부분을 잘하기 위해 다른 분야와 차별되게 특별히 요구되는 능력은 없고, 전체적으로 수학을 잘하기 위해 필요한 몇몇 주요 실력만 갖추면 된다.

2016년에 중등 교육과정에 가깝게 출제한다는 말이 공식적으로 기재되면서 코시-슈바르츠 부등식은 앞으로 잘 나오지 않을 것으로 예상된다.

2016년에 이어 2017년에도 KMO 중등부 1차에서 대수가 단 한문제도 출제되지 않았다.[14] 교과과정에 가깝게 출제하기 위해 어려운 부등식 문제들을 낼 수 없게되었기 때문인 것으로 예상된다.

3.2. 정수[편집]

Number theory

이 분야는 고등학교 과정에서 나오지 않는, 대학의 기초 정수론을 다루고 있다. 소수의 성질을 주로 다루며, 합동식, 부정방정식 등은 전부 이 분야. 깊게 들어가면 원시근, 펠 방정식, 루카스 정리, 르장드르 부호, LTE [15]무한강하법, 대수적 정수론 등을 배우기도 한다. 수에 대한 이해와 직관이 중요하며, 어렵게 내면 정말 어려운 분야이다.[16] 하지만 2016년, 정수 스타일 문제가 7~8문제정도 나와서 대수를 잘하던 사람들이 폭락하는 현상이 일어났다. 추천도서로는 마두식의 정수론, 장환수학 정수론, KMO 바이블 등이 있다. 1차에서는 사실 나누어떨어짐이랑 대수만 잘 쓰면 다 맞출 수 있다. [17] 실제로 마두식의 정수론 한권이면 중등 KMO는 거의 다 맞출 수 있다고 한다.

3.3. 조합[편집]

Combinatorics

이산적인 구조에 대해 다루는 분야로, 1차에서는 주로 경우의 수에 관한 문제가 출제되지만 2차에서는 범위가 다양하다. [18] 경우의 수, 순열, 조합, 집합론, 그래프 이론, 게임 이론 등을 물으며, 가끔씩 피보나치 수열과 비슷하게 점화식을 세우는 문제가 나오기도 하므로 수학 II의 수열 부분과 확률과 통계의 경우의 수 부분을 공부하는 게 좋다. 자신의 머리만으로 주어진 상황과 알고 있는 이론의 관계를 이끌어 내야 하기 때문에 더 어렵다. 1차에서는 난이도가 평이하나 2차의 난이도를 올리는 주범. 각 시험의 최종보스 역할을 톡톡히 하는 분야이며, 주로 KMO 4번과 8번, FKMO 3번과 6번에서 똬리를 틀고 앉아 학생들을 농락하곤 한다. 이러한 추세는 2015년 기준으로 최근 IMO 시험의 트렌드를 반영한 것으로[19][20], 최근 몇년간 IMO에서는 조합 문제가 6번으로 나왔다.[21] 우리 나라 학생들이 외국에 비해 잘 못하는 분야이기도 해서[22], 우리 나라 IMO 성적은 조합분야에 달려 있다고 해도 과언이 아니다.

많은 학생들이 조합을 가장 싫어하는 이유는 해도 실력이 별로 늘지 않고 그렇다고 안해도 그렇게 많이 떨어지는 것 같지는 않는 기적의 느낌을 제공하기 때문이다. 딱 느낌이 부등식과 정 반대적인 측면이 강하고, 조합을 잘하는 애는 처음부터 잘한다. 정말 다른 과목은 지지리도(...) 못하는데 조합은 기가 막히게 잘하는 학생들을 심심치 않게 볼 수 있다. 그렇다고 조합을 잘하면 꼭 모든 분야를 잘한다는 보장도 없어서 실제 조합은 한국 해당 학년 대장급 학생들이 기하실력이(이것도 공부와 보조정리 많이 알면 도움이 되긴 하지만 기본적인 기하 센스라는 것이 있고 하다못해 부등식 문제도 분명 타고난 재능이라는 것은 있다.) 완전 꽝이어서 IMO에 나가지 못한 안타까운 경우도 있다.

3.4. 기하[편집]

Geometry
유클리드 기하학을 다루며, 대부분의 경우 논증기하학의 풀이로 푸는 것을 기본으로 한다. 다른 분야에 비해 보조정리가 매우 많으며, 중학교 2,3학년 과정의 삼각형의 내심·외심·무게중심, 닮음, 삼각비, 원의 성질 외에도 스튜어트의 정리, 메넬라우스의 정리, 제2코사인법칙 정도는 기본 중의 기본이다. 보조정리를 사용해도 정 안되는 경우 반전기하학, 해석기하학, 복소기하학[23]을 사용하여 다른 관점에서 보고 계산하기도 한다. 타 분야에 비해 노력이 중요한 분야다. 알고 있는 보조정리의 개수에 따라 문제를 푸는 시간이 비약적으로 단축될 수 있으며, 우리 나라 학생들이 선호하고 잘하는 분야이기도 하다. 기하또한 보조정리(lemma)를 얼만큼 외우느냐와 정리를 얼마나 많이 아느냐가 관건이다. 대치동 목동의 학원가(cms, 엠솔, 올림피아드, 미탐.....)[24]에서 꼭 수업을 들어야하는 과목 중 하나다.

중등 kmo같은 경우 기하는 기본적으로 3개 이상 맞아야지 수상권이다. 또한 중등2차에서도 가장 풀 만하고 승부를 걸어야 할 부분이 기하다. 기하학 머리는 좀 딸리지만 대수/정수가 뛰어난 학생들은 위에서 노가다로 표시한 해석/복소 기하학을 사용하기도 한다. 대신 이 두 방법의 치명적인 단점은 각각 좌표 계산의 복잡과 원, 교점 계산의 어려움이다. 그래도 굳이 쓴다면 쓰는 경우도 많다. kmo 1차에서는 정식 풀이는 아니지만 정밀작도[25], 극단법[26] 이라는 되도 않는 엉터리 이긴 하지만 매우 유용한 편법을 이용하기도 한다. [27]

위의 서술 중 해석기하는 흔히 학교에서 배우는 xy 평면에서 계산하는 직교좌표계(혹은 데카르트 좌표계)를 이용하는 것을 말하는데 고등부에서는 이보다는 간단한 기하학적 성질과 함께 복소수나 무게중심 좌표계(barycentric coordinate)로 풀면 오히려 논증적 풀이방법보다 더 깔끔하게 풀리는 경우도 꽤 있어서 고등부 2차 이상을 바라보는 학생이라면 반드시 복소수와 barycentric 좌표계가 뭔지 공부해두는 것이 좋다. 복소수법과 barycentric coordinate 모두 원이 여러개 등장하는 문제에서는 계산이 너무 복잡해지는 경우가 많아 쓰기 어려울 때도 있는데 원이 많이 등장할 때도 원의 중심 등 원의 특징적인 점들에 대해서만 문제에서 이용하면 풀리는 경우가 상당수 있어 노가다 법도 반드시 익혀둬야 한다. 물론 논증풀이는 우아함에 있어 거의 99% 이상의 문제에서 노가다를 압도하며 사실 기하를 올림피아드에서 다루는 이유도 논증으로 풀어보라는 것이다. 하지만 학생 입장에서 시험장에서 우아함만 찾다가 0점 받는 것 보다는 개노가다 풀이를 하더라도 완벽하게 풀어서 점수를 따는 것이 개인에게 이득인 점을 생각하면 반드시 공부해야 한다.

4. 시험과정[편집]

4.1. 1차 시험 및 수행평가[편집]

4.1.1. 중등부[편집]

중등부의 경우 공식적인 1차 시험이 존재한다. 간혹 Pre-KMO(PKMO)라고 하기도 한다.
주로 5~6월에 있으며, 4시간에 20문제를 푸는 형식으로 치러진다. 100점 만점이며, 배점 구성은 4점 4문제(1~4번), 5점 12문제(5~16번), 6점 4문제(17~20번)의 구성으로 되어 있다. 각 4분야에서 5문제씩 출제한다.
  • 2016년에는 이 원칙이 지켜졌다고보기는 좀 그렇다. 대수와 혼동되기 쉬운 정수 과목의 특성상, 대부분의 문제를 부정방정식으로 도배해 놓아서 그것만 놓고 보면 정수만 9문제 나온 꼴이 되었다.[28] 뒤에서 서술할 2차 시험 및 FKMO의 크고 아름다운 주어진 시간을 보면 알 수 있듯이, 문제의 난이도 자체는 별로 낮지 않다.[29] 2008년부터 쉬워지고 있는 추세이며 2007년까지 50점 내외였던 동상 커트가 60대 중후반까지 올라가기도 했고 현재진행중이다. 모 학원은 7명의 선생님이 같이 풀어서 올린 정답에서 총 7회를 걸쳐 수정되었고, 점수를 계산해보면 금상 컷 아래이기 때문에 "선생님 7명이 풀어서 은상을 받았어요" 가 유행어가 되기도 했다. 그만큼 실수하기도 쉽고 문제도 어렵다. 즉, 처음에는 시간 제한을 두지 않고 실수 없이 문제를 푸는 연습을 하자.

  • 2017년 시험은 사람들마다 평이 갈린다. 대부분은 작년보다 조금 더 어려워졌다 라는 반응이다. 0점 방지 문제가 더 쉬워졌고 100점 방지 문제가 더 어려워 졌다. 특히 가형 7번은 이번 기하 문제중에 가장 어렵고 까다로운 유형이다. 여러 학원에서 이번 상 컷이 10점 정도 내려갈것으로 추측하고 있다. 결국 동상컷은 54점, 장려컷이 45점. 허나 이번 KMO의 등급컷이 하락한 이유는 중3이 영재고입시일이 바로 KMO 다음날이라 KMO에 지원하지 않아서 등급컷이 폭락하였다는 설도 유력하다. 중3은 실력으론 초등학생 및 중1,2 와 비교할 수 없고, 경력도 넓고, 무엇보다 KMO을 여러 해 치면서 경험을 많이 하기 때문이다.
  • 2018년에는 다시 난이도가 하락하였다! 우선 기하가 매우 쉬워서 6점짜리 문제조차 단 세 줄의 풀이로 풀리는 수준이었고, 정수도 매우 쉬웠다.그러나 많은 대수 문제가 정수와 결합하여 나와 대수 잘하는 학생들 중 고전을 겪은 학생들도 있긴 하다. 다만 해석과 조합에서 실수를 유발할 수 있는 문제가 많아서 커트는 예년과 비슷하거나 조금 더 올라갈 것으로 보인다.

4.1.2. 고등부[편집]

고등부는 지원 시 서류 및 자기소개서를 제출하는 서류전형을 가장 먼저 겪게 되며, 서류전형에 통과할 경우 한 달간 통신강좌를 개시한다. 강의 내용을 주고 그것으로 자습을 하게 하는 방식이며, 4주간의 강좌 후 5~6월 경 수행평가가 실시된다. 이것에 대한 비판이 있다면 최근 IMO 실적이 이것 때문인지 떨어졌다는 비판이 있다. 우연의 일치인지 이러한 서류 면접형 방식이 정착된 2014 KMO에서 선발된 대표팀이 IMO에서 줄곤 1~2위를 하다가 급격히 7위로 추락(잘했다는 소리도 있으나 전체적 성적이 떨어진 점도 있다)했다는 것이다. 사교육 방지용이라지만 애초에 KMO라는 것부터가 수준이 사교육을 안 할 수가 없는 어려운 난이도이기 때문에...

그런데 사실상 서류전형에서 떨어지는 사람은 그리 흔하지 않고[30], 통신강좌만으로 수행평가를 대비하기에는 한계가 있기 때문에[31] 이 둘은 형식에 가깝다는 평을 받고 있으며, 수행평가의 형식이 중등부 1차 시험과 동일하기 때문에 말만 수행평가지 실제로는 교묘하게 위장한 고등부 1차 시험이라고 볼 수 있다. 단 난이도 면에서 수행평가를 중등부 1차 시험과 동일하게 봤다면 오산. 중등부에 비하면 아스트랄하게 어렵기 때문에 커트라인조차 매우 낮은 편이다. 수행평가로 명칭이 변경된 이후에는 상을 따로 수여하진 않으며 2차시험 대상자를 발표하는데 보통 커트라인이 20~30점대이며, 극단적으로 10점 후반~20점 초반대로도 통과하는 경우도 있다.

궁금한 사람, 특히 이 글을 본 수학과 학생들 중 “훗, 겨우 미성년자 경시 주제,” 라고 생각한 사람들은 당장 위 사이트에서 문제를 찾아 풀어보기 바란다. 참고로 이 문제들은 고작 예선전에 지나지 않는다. 물론 불쌍하니 0점 방지 문제가 몇 개 정도 있다. 예를 들면 2014년 중등부 1차시험 18번 문제[32]와 이번 2016년 1번은 고등학교 1학년 과정만으로도 충분히 풀 수가 있다.

2017년부터는 약간 복잡한 방식으로 전형을 실시한다. 일단 과학고~영재고 학생을 제외한 일반고 학생 등만 응시할 수 있는 오일러 부와 전체 참가인 가우스 부로 분리되고, 각 전형별로 우수 성적자에게 금상~장려상[33]을 준다. 또한 형식상이지만 실시되었던 1차 시험 교육 또한 폐지되었다. 그런데 국가 대표는 오일러 부와 가우스 부에서 동시에 뽑는다.

4.2. 여름학교[편집]

1차 시험이 일정 점수를 넘은 사람을 따로 모아, 여름학교를 개최한다. 여름학교는 보통 11박 12일의 놀자판 캠프 형식으로 치뤄지는데, 사실상 국가대표 선발에 큰 의미는 없다. 그야말로 빚 좋은 개살구.

애초에 중등부는 난이도가 쉽고 고등부는 커트라인이 낮아 1차 시험이 그렇게만치 큰 변별력이 없는 데다가, 2012년까지만 해도 2차는 2~3주밖에 안 남았고, 교육과정은 어지간한 대치동 학원보다도 떨어지는 데다, 날씨도 덥지, 심하면 영재학교 입시(캠프) 일정과 여름학교 일정이 겹치기 때문에 오히려 안 가는 것이 남는 장사가 되기도 한다.

특히 2010년에는 고득점을 얻은 중·고등학생들이 대거 빠져 할 수 없이 지역동상으로 간신히 합격한 초딩이 입교 대상자로 선발되기도 했다.[34] 오죽했으면 여름학교 조교였던 강사들이 "작년에 FKMO 성적우수 특례로 1차 건너뛰고 여름학교 참가한 학생을 제외하면 여름학교 참가한 학생 중 2차 금상 받는 학생이 손에 꼽힐 정도였다"고 할까.

여학이라고 줄여서 부르기도 한다. 수준은 겨울학교보다 다소 낮은 편이나, 많이 놀 수 있다는 점 때문에 가는 사람들도 있다고 한다.(...)

4.3. 여름 통신강좌[편집]

여름학교 수료자에 한해서 여름 통신강좌가 우편으로도 발송되고, 사이트를 통해서도 볼수 있다. 보통 8호로 완결되며, 겨울 통신강좌보다는 아니지만 유익한 내용이 많으니 해당되는 학생이라면 버리지 않고 읽기로 하자. (여름은 홀수, 겨울은 짝수)

공부하느라 여름학교를 가지 않은 고등부는 구글 홈페이지를 통해 KMO 홈페이지를 우회하여 통신강좌를 다운받을 수 있으니, 시도해보기 바란다.

4.4. 2차 시험[편집]

2차는 웬만큼 수학을 잘하지 않는 한 통과할 수 없다.

과거에는 8월 경에 시행했지만, 2013년부터는 11월에 시행하는 것으로 공식 변경되었다. 형식은 오전과 오후, 각각 2시간 30분의 시간 제한에 4문제씩, 서술형 8문제로 치뤄진다. 각 4분야에서 오전 1문제, 오후 1문제씩 출제된다. 문제 수는 적지만 서술형인데다 어려워서 8문제를 완벽하게 풀어서 내는 사람은 손에 꼽힌다. 각 문제당 최대 7점씩 총 56점이며, 답만 적는 경우, 혹은 문제를 풀지 못하고 핵심 아이디어를 적어 냈다 하더라도 1점~2점밖에 못 받고, 풀이를 모두 완성했다 하더라도 빠뜨린 경우가 있거나, 부등식 문제인데 등호조건을 쓰지 않았다던가, 서술이 미흡한 부분이 있다면 4~6점으로 감점되기도 한다.[35] 4~6점으로 감점되면 다행이지 0~1점 받는 학생도 수두룩하다.

대부분의 경우 오전 4문제 중에 4번, 오후 4문제 중에 7·8번은 아예 접근을 불허하는 문제로 출제된다.[36] 학원가에서도 갖가지 뻘짓을 다 해서 겨우겨우 풀고는 3페이지가 넘는 넘사벽급 노가다 풀이를 올리기도 한다. 또한 고등부 문제와 그에 상응하는 중등부 문제가 비슷한 풀이 방법이나 비슷한 아이디어, 키워드를 공유하고 있는 경우도 있고, 2011년부터는 아예 고등부 문제 중에 상대적으로 쉬운 문제의 경우 중등부에 동일한 문제를 출제하기도 했으며, 만약 중등부인데 넘사벽 문제가 나왔다면, 시험이 끝나고 학원 사이트/KMO 커뮤니티 등지를 찾아보면 '그 문제는 고등부 몇 번과 문제가 동일했다는' 소식을 들을 수 있을 것이다.

2011~2012년의 금상 커트라인을 예로 들면, 중등부는 5문제(31점 내외. 대개 오전 3문제, 오후 1문제+부분점수), 고등부는 3문제 반(24점 내외. 대개 오전 2문제, 오후 1문제+부분점수) 정도로 생각되는 듯.[37] 다만 후술하겠지만 이 두 번은 난이도가 상당히 높았다.

사실 채점을 해본 사람에 의하면, 의외로 채점 기준은 매우 단순한 경우가 많다. 기본적으로 모범 답안에서 중요한 과정이 되는 스텝마다 부분 점수를 주는데, 그 과정이 '매우 간단한' (문제만 보고 바로 생각할 수 있는 수준의) 것일 수도 있다. 즉, '에라 모르겠다'라고 문제 조건을 대충 변형해서 써놓았더라도 문제 풀이의 과정에 들어간다면 1~2, 많으면 3점도 받을 수 있다! 지나치게 장황하게 쓰기보다는 가능성이 있는 과정을 유도해 내는 것이 중요하다.

다만 모든 문제가 그렇듯 모법 답안은 말 그대로 문제를 보고 해낼 수 있는 모범(또는 평범한) 풀이일 뿐 나올 수 있는 유일한 풀이가 아니기 때문에 가끔 예상도 안 된 풀이가 나오기도 한다.

IMO에서는 모범 답안 외에 제시된 풀이 중 모범풀이보다 훨씬 나은 풀이이거나 굉장히 우아한 풀이를 제시할 경우 등 가치가 있다고 판단되는 경우 special prize를 준다. 근래에는 2005년 IMO 3번 문제에서 3변수 부등식 문제를 n변수 문제로 확장시켜서 풀었던 학생에게 특별상이 주어졌다.

2017년 KMO 2차는 기하가 해탈할 정도로 쉬웠고, 조합은 매우 어려워 상이 대수와 정수에서 결정된다는 의견이 많다. 대수은 키 포인트만 알면 쉽게 풀 수 있었다는 평이고, 정수는 1번은 더블카운팅잠시만 이거 정수라 하지 않았나, 2번은 최대최소 대입하면 되었다. 3번은 좀 어려웠다는 평이였다. 특이하게 조합이 한 문제였고, 정수가 세 문제였다. 몇년동안 계속 나오지 않았던 부등식이 대수 1번 문제로 나왔다. 대수 2번 풀이가 특이하여 받아들이기 어려운 학생도 많은 듯 하다.

2018년 중등부 2차의 경우 정수, 대수에서 서너문제 이상 푸는 사람이 대부분일 정도로 난이도가 쉬웠으며 타 기출문제를 그대로 가져다 쓰는 등 난이도 관련 논란이 있었다.[38]
금상커트의 경우 4,5문제를 완벽히 푸는 것으로 알려져있다.

4.5. 겨울학교[편집]

중, 고등부 KMO 2차 시험에서 각각 상위 20명, 60명 정도를 선발한다. 중등부는 금상 상위권, 고등부의 경우 금상 거의 전체~은 상위 50% 정도가 해당된다. 일반고 출신은 동상을 받아도 입교하는 경우가 있다. 2주 정도로 운영되며, 1월 초, 중순을 잡아먹는다. 매주 주말에는 FKMO와 같은 형식의 '겨울학교 모의고사'가 있으며, 미미하게나마 13인 선발에 반영된다.[39] 진짜배기 실력자들이 모이는 곳으로, 이곳에 한번 가면 내로라하는 실력자들과 교분을 쌓으며 신나게 마이티를 치면서 밤을 새게 될 것이다. 그러니만큼 보통은 소위 '현역'이라 불리는 고1~2학년 최상위권 학생들이 들어오지만, 고등부 겨울학교에 중학생, 심한 경우 초등학교 5학년이 참가한 적도 있었다! [40]2017년 KMO에는 무려 "'4학년"' 까지도 참가하게 되었다! (이 학생은 실제로 성대경시를 자기 학년 3학년 이상의 문제를 풀어도 거의 만점이 나온다고 한다.)
보통 시험이 없는 날에는 아침에 교수 강의, 점심에 조교 문제 풀이, 저녁은 자율학습을 하게 된다. 자율학습은 그 다음날 조교가 풀어줄 문제이며 난이도가 입교하고나서 점점 헬게이트가 된다(...) 초반에는 열성적으로 푸는 경우가 많지만 후반으로 갈수록 참여율이 저조해진다. 어차피 꼭 풀 필요가 없기도 하고. 보통 푼 사람이 수업시간에 풀이를 적으며 어려워서 푼 사람이 없으면 조교가 풀어준다.
이런 자료들을 모으고 모아서 매 차수 겨울학교마다 연습문제 풀이집을 발간하기도 한다.
겨울학교 교육 과정은 여름학교와 비슷하다고 한다.
겨울학교 모의고사에서 일정 이상의 성적을 거두면 다음해 kmo 1차(수행평가)를 면제하고 2차시험으로 곧장 올 수 있게 한다고 한다.

4.6. FKMO[편집]

Final KMO

예년 고등부 2차시험 동상 이상이거나 중등부 겨울학교 수료자에 한해서 본다. 최종 13인 선발에서 매우 큰 비중을 차지하는 시험이며, 거의 이 시험과 TST로 대표 선발이 결정된다고 해도 과언이 아니다.[41][42]
형식은 보통 3월 말 쯤 토/일 2일간 치뤄지며, 각각 3문제에 4시간 30분의 제한시간으로 응시한다. 이는 IMO와 같은 형식이다.
문제의 난이도는 매우 어려우며, FKMO에서 수상경력이 있는 사람들은 비록 13인이나 대표가 되지 못한다고 해도 수학경시 바닥에서 고수라고 불리며 네임드가 된다. 수상은 최우수상/우수상/장려상의 3가지로 분류되며, 가장 고득점을 달성한 사람이 최우수상을 받는다. (즉, 1명...) 보통 입상권은 3문제 선에서 결정되는 편. 2차시험보다 난이도가 훨씬 어려운 걸[43][44] 감안하면 매우 커트가 높은 편이다.[45] 중학생은 장려상만 받아도 매우 잘하는 것이라고 할 수 있다. (최우수상은 거의 무조건 대표로 직결되는 그야말로 엄청난 상이다. 사실 TST 못보면 대표 못된다) 이 시험의 결과 발표와 13인, 교육대상자의 발표는 거의 동시에 난다.

4.7. TST[편집]

모든 KMO의 일정 중 마지막 시험이다.[46] Team Selection Test의 약자 유일하게 교수들이 출제하지 않으며, 비밀로 간주되어 엄중하게 보관되고 있는 그 해의 IMO Shortlist에서 6문제를 적당히 뽑아 출제한다. 거의 Shortlist의 넘버 4 이상으로 출제되어, 난이도는 굉장히 높다. 응시자는 단 13명[47]이며, 이 시험으로 대표 6명을 선발한다. 워낙 상위 클래스의 사람에게만 열려 있는 시험이므로, 존재 자체를 잘 모르는 사람도 많다.

5. 난이도[편집]

고등부 시험의 경우 제 25~26회 KMO(2011~2012)가 어렵기로는 탑을 달렸으며 2012 KMO 고등부 8번(정수조합)은 한명도 제대로(7점을 맞은) 푼사람이 없다는 출제자의 발언이 겨울학교에서 발설되었다. 너무 어렵다는 의견 때문인지 27회 KMO와 FKMO의 문제 난이도는 예전에 비해 대폭 낮아졌다.

사실 KMO의 난이도를 논하는 것은 매우 무의미한 일이다. KMO 관계자들은 검토나 난이도를 조절할 여력이 없기 때문이고, 반대로 만점이 나와 변별력을 잃는 것도 아니기 때문이다.

1차 시험의 난이도는 2008년 시험부터 중등부의 경우 상당히 낮아졌으나 고등부는 이전과 별로 차이는 없어보이며 2차시험의 난이도는 중, 고등부 모두 이전과 별로 차이가 없다. 어차피 2차 시험은(특히 고등부는) 할 애들만 하고 어차피 거의 사교육을 받은 애들이기 때문에...
그리고 2016년 현행 교육과정과 연계를 강화해 난이도를 낮추겠다는 공지 후 정말 역대급으로 쉬운 난이도가 나왔다. 그리고 대수 자체가 중학교와 연계성이 별로 없어서인지 대수는 단 1문제만 나왔다. 그 대신 정수가 9문제. 실제로 동상컷 74점 에 장려컷 68점이다.[48] [49] 고등부는 한 두문제 정도를 제외하면 이전과 별 차이는 없다. 커트가 5~10 점 정도 올라갈 거라는 예측은 있다.
다만 이 시험의 커트라인 상승에는 기하가 큰 영향을 주었는데, 문제 오류 1개와 정밀작도시 바로 공원점이 나오는 문제 1개, 그리고 맨 마지막 기하 문제는 등각켤례선(isogonal line)만 알면 바로 직각 삼각형인 것이 증명되어 넓이를 구할수 있는 문제로 나왔기 때문이다...
그리고 고등부 커트라인에는 변동이 없는 것으로 드러났다.
2017년에는 영재학교 시험 전날에 kmo를 봐서 3학년 응시자가 크게 줄고 시험 난이도도 어려워 장려커트가 다시 40점대로 떨어졌다.
올해는 난이도가 작년에 비해서 쉬웠으며 커트라인이 다시 높아질 것으로 보인다.
[1] 2010년까지만 해도 과학고와 대학의 강력한 스펙이었지만 이제는 그런거 없다. 다만, 과학고 말고 영재고의 경우 도움이 좀 된다. 영재고 시험문제가 워낙 어렵다 보니.... 때문에 영재고 준비하거나 수학을 정말 좋아하는게 아니라면 안 하는게 좋다.[2] 또한 IMO대표로 나온 학생이 저렇게 말했다는 것은 그만큼 우리나라에서 그동안 올림피아드를 입시용으로 써먹어 왔다는 뜻이기도 하다. 물론, 아직도 학원가에서는 입시용으로 많이 쓴다.[3] 혼자서 공부하는 영재들도 도전할 수 있도록 난이도를 낮춘것으로 추측된다.[4] 이것 때문에 고등학교 3학년은 KMO 고등부에 출전할 수 없다. 만약 출전하려면 재수를 미리 각오하거나 유학으로 미국 등에서 만 19세가 되는 해 9월부터 대학 수업을 듣게 되어야 한다.[5] 대부분의 수학과 신입생들이 처음 난관을 겪는 과목이 해석학인데, 과목 내용보다도 문제를 서술하는 방법에 익숙하지 않아 해메는 경우가 부지기수다.[6] 한국에서는 해석이라고 하기도 한다. C모 학원 고등부로 가면 해석학적 기법을 사용하는 것을 반영한 듯 하며, 해석이라는 말 자체가 그다지 틀린 것은 아니다. 애초에 대학에서 배우는 대수와 여기에서의 대수는 많이 다르다.[7] 점과 점 사이의 거리 공식 aka 피타닮음을 이용하여 주어진 식의 최대최솟값을 구하는 방식.해석기하 대부분 (x+a)2+32\sqrt{(x+a)^2+3^2}루트안에 제곱식이 들어간다.[8] Sum Of Squares Method[9] Mixing Variables Method[10] Strong Mixing Variables Method[11] 주로 미적분이 이 고등기법에 해당한다.[12] 2014 KMO처럼 아주 가끔 실패하지만.[13] 이항 계수를 사용할 때 그 함수의 지수가 이항계수의 지수보다 낮을 경우 합이 0이 되는 법칙[14] 2017에는 연립방정식 문제가 출제되었지만 이마저 정수조건을 가진 연립방정식이였다[15] Lifting the Exponent의 약자다. 데이터 무제한 LTE가 아니다[16] 예를 들면 IMO 역사상 최악의 문제 중 하나로 손꼽히는 문제로 "양의 정수 a,b에 대해 (a^2+b^2)/(ab+1)의 값이 정수라면 그 값은 항상 완전제곱수임을 증명하라" 등이 있다. 이 문제의 경우 호주의 저명한 수학자들이 모두 증명하지 못했고 만점이 참가자들 중 고작 11명에 그쳤다. 그리고 응오바오쩌우는 그 문제를 푸는 도중에 비에타 점핑이라 불리는 수학 증명 기법을 창조해냈다.[17] 다만 2014 KMO는 고등부에서만 나오던 2차 잉여에 대한 문제가 출제된 적 있으나, 거의 15년 만에 한 문제 출제된 것이기 때문에 굳이 신경 쓰지 않아도 된다. 게다가 2014년 전후는 중등부 KMO가 가장 어려웠던 해로 손꼽히므로 더더욱.[18] 조합 문제인지 아닌지 애매한 문제들도 있다. 예시로 2012 고등부 8번에는 유한체 + 가우스 정수의 개념이 들어간 문제가 나왔는데, 4k+3꼴의 이차잉여를 사용하므로 정수라고 하기도 하고, 집합론의 개념과 확률적 조합론이 들어 있으니 조합이라고 할 수도 있다. 다만 정수는 5번, 대수는 7번에 있기 때문에 각 분야마다 오전, 오후 모두 한 문제씩 나와야 한다는 암묵의 룰이 있으므로 조합이라고 볼 여지도 있다.[19] 사실 둘은 별다른 관련성이 없다. IMO 시험의 트렌드는 뚜렷하게 정의내리기 어렵고 오히려 최근 IMO 시험 트렌드는 절대적인 기하의 강세라 볼 수 있다. IMO에 자주 나타나지 않는 그래프이론이 KMO엔 밥먹듯 나타나는 것만 봐도.[20] 다만 KMO에 조합이 강세를 띠는 것은 한국 학생이 전통적으로 조합에 약했기 때문이고 이를 타파하기 위한 방안 중 하나였음은 명백하다. 이러한 전통적인 한국팀의 약세는 최근 거의 사라졌지만, KMO의 출제트렌드는 여전하다.[21] 하지만, 2016년 IMO의 경우에는 2번, 6번에 출제되었는데, 평이하거나 쉬운 난이도였다.[22] 앞에도 서술했지만 이는 상당부분 완화되었다. 대표적 예로 2013년 IMO 성적 참조.[23] 뒤의 두 개는 노가다.[24] 요즘엔 cms가 영재고 입시 시장에서 절대 강자라고 카더라.[25] 1차는 답이 무조건 정수라는 것을 이용해서 작도를 정확히 하여 답을 짐작하는 것.[26] 답이 무조간 1개라는 점을 이용해 문제를 매우 극단적인 상황으로 만드는것. ex) 일반적인 사각형을 정사각형으로 만들어서 풀기[27] 다만 KMO 1차는 어떻게 풀든 답만 잘 나오면 장땡(...)인 시험이므로 점수를 위해서 편법들을 쓰는 것은 나쁘지 않다. 실제로 본 위키러는 2018 KMO 1차에서 정밀작도를 통해 10점을 얻었다![28] 각 분야마다 1문제는 4점, 1문제는 6점, 나머지는 5점.[29] 특히 6점 짜리 문제들은 2차시험에서도 나올법한 아이디어들이 나오는 경우도 많다.[30] 2016년 KMO부터 폐지되었다.[31] 통신강좌의 절반은 수행평가가 끝나고 나눠 주기도 한다. 그냥 교양으로 읽어 두라는 것이다.[32] 무려 6점으로 배점이 가장 높은 4문제 안에 속함에도 불구하고 여러가지 절대부등식 단원을 배운 사람이라면 풀 수 있을만한 문제이다.[33] 2010년대 초에는 고등부에서 잠깐 수상 제도가 폐지되었다.[34] 덕분에 최근은 결원을 거의 충원하지 않는 추세다. 엄청 빠져서 원래 꽉 차야 할 대강당이 1/10 밖에 없는 건 아닐까?[35] 그런데 이 감점 혹은 부분점수도 만만하게 볼 수 없는 것이, 못 푼 문제에서 부분점수를 꼬박꼬박 받아 한 문제를 더 푼 효과를 내어 상을 올리기도 하고, 반대로 서술이 미흡한 부분에서 꼬박꼬박 감점이 되어 한 문제를 덜 푼 것처럼 되면 상이 내려가기도 한다. 서술을 연습하자.[36] 문제 난이도는 오전에서 1~4 순으로, 오후에서 5~8 순으로 높아지는 게 일반적이다. 오후가 오전보다 난이도가 높으므로 2·5번, 3·6번, 4·7번은 난이도가 비슷한 것으로 볼 수 있다. 다만 일부 편차는 있다. 단적으로, 2012년 오전 문제 중에는 1번을 가장 어렵게 내는 테러짓을 했다(…) [37] 사실 웹 상에 떠돌아다니는 말들이 잘 맞기는 하지만, 채점기준표 성적 커트라인 등을 공개하지 않는다. 2차는 1차와 달리 교수 재량으로 채점한다. 학생이 서술을 잘 한다면 1문제 덜 풀어도 상이 나오는 편이고 서술을 못한다면 8문제 모두 풀고도 은/동까지 떨어질 수 있다. [38] 시중의 책 '마**의 정수론'에 소개된 문제가 그대로 출제되기도 하였다.[39] 잘못 알려진 상식중에 하나다. 겨울학교 모의고사는 13인 선발 및 최종 대표 선발에 FKMO만큼은 아니더라도 굉장히 높은 비중을 차지한다.[40] 초6이 참가한 적이 있었는데 몇년 후 서울과고에 진학해 국가대표가 되었다.[41] 한국대표 선발에서 각 시험이 차지하는 비중은 매년 조금씩 바뀐다. 시험 비중에 대한 여론은 TST = FKMO > 겨울학교 모의고사 >= APMO >> 2차 KMO으로 보통 알려져 있지만 내부 사람들 외 확실한 정보를 아는 사람은 아무도 없다. 2차 KMO가 생각보다 비중이 크다고 주장하는 사람들도 있다.[42] 2017년 대표선발부터는 RMM(Romanian Master of Mathematics)가 추가로 반영된다고 한다. 비중은 APMO와 모의고사의 중간정도인 듯.[43] 2차시험에서 4,8번, 즉 제일 어려운 문제가 FKMO에 1~2번으로 나오는 수준이다.[44] FKMO 1~2번보다는 4~8번이 일반적으로 훨씬 어렵다[45] 하지만 한 문제당 주어지는 시간이 FKMO는 90분, KMO는 45분이다[46] 한국대표 선발에는 여기에서 언급된 시험 외에 아시아-태평양 수학올림피아드 APMO 결과도 반영된다. 다만 이 시험은 대한수학회가 아닌 APMO 개최국에서 주관하는 것이므로 이 문단에서는 다루지 않는다. 이는 상술한 RMM도 마찬가지다.[47] 교육대상자도 응시대상. 다만 이들의 성적은 반영되지 않는다.[48] 전년도인 2015년의 동상컷이 40점대였던것을 생각하면 매우 큰 폭의 난이도 변화이다.[49] 실제로 kmo를 제대로 공부하지도 않은 학생들이 경험을 쌓기 위해 가서 수상한 경우도 꽤 있었다

나무위키