문제
다음 특징을 가지는 양의 정수들이 있다.
1. 어떤 수의 각 자릿수를 제곱하여 합하면 50 이다.
2. 어떤 수의 각 자릿수는 왼쪽에 있는 수 보다 크다.
두 특징을 모두 가지는 가장 큰 정수의 각 자릿수 곱은 얼마인가?
(A) 7  (B) 25  (C) 36  (D) 48  (E) 60
풀이
(1)
첫 번째 조건을 만족시키기 위해서는 제곱수의 집합 
{ 1 , 4 , 9 , 16 ,25 ,36 ,49 } 에서 합해서 50이 되는 숫자들을 선택해야 한다.
두 번째 조건을 만족시키기 위해서는 서로 다른 제곱수를 선택해야 한다.
결과적으로, 여기에는 다음과 같이 세 가지 가능성이 있다.
1 + 49
1 + 4 + 9 + 36
9 + 16 +25 이다.
이것은 각각 정수 17 , 1236 , 345 를 나타낸다.
이들 중 가장 큰 것은 1236 으로 각 자릿수의 곱은 
1 * 2 * 3 * 6 = 36 이다.
답은 (C) 36  이다.
There are positive integers that have these properties:
- the sum of the squares of their digits is 50, and
- each digit is larger than the one to its left.
The product of the digits of the largest integer with both properties is
(A) 7 (B) 25 (C) 36 (D) 48 (E) 60
(A) 7 (B) 25 (C) 36 (D) 48 (E) 60
Solution
Five digit numbers will have a minimum of  as the sum of their squares if the five digits are distinct and non-zero. If there is a zero, it will be forced to the left by rule #2.
 as the sum of their squares if the five digits are distinct and non-zero. If there is a zero, it will be forced to the left by rule #2.
 as the sum of their squares if the five digits are distinct and non-zero. If there is a zero, it will be forced to the left by rule #2.
 as the sum of their squares if the five digits are distinct and non-zero. If there is a zero, it will be forced to the left by rule #2.
No digit will be greater than  , as
, as  .
.
 , as
, as  .
.
Trying four digit numbers  , we have
, we have  with
 with 
 , we have
, we have  with
 with 
 will not work, since the other digits must be at least
 will not work, since the other digits must be at least  , and the sum of the squares would be over
, and the sum of the squares would be over  .
. will give
 will give  .
.  will work, giving the number
 will work, giving the number  . No other number with
. No other number with  will work, as
 will work, as  and
 and  would each have to be greater.
 would each have to be greater. will give
 will give  .
.  forces
 forces  and
 and  , which has a leading zero. Smaller
, which has a leading zero. Smaller  will force all the numbers to the smallest values, and
 will force all the numbers to the smallest values, and  will give a sum of squares that is too small.
 will give a sum of squares that is too small. can only give the number
 can only give the number  , which does not satisfy the condition of the problem.
, which does not satisfy the condition of the problem.
Thus, the number in question is  , and the product of the digits is
, and the product of the digits is  , giving
, giving  as the answer.
 as the answer.
 , and the product of the digits is
, and the product of the digits is  , giving
, giving  as the answer.
 as the answer. 
댓글 없음:
댓글 쓰기