우리는
머릿속을 들여다볼 수 있다. 끔찍한 상상은 하지 않아도 된다. 아래 사진을 한 번 보자. 뇌를 비롯한 머릿속 장기와 혈관 구조가 선명하게
보인다. 바로 자기공명영상(MRI, Magnetic Resonance Imaging)장치
덕분이다.
MRI는
핵자기공명이라는 원리를 이용하여 찍는 사진이다. 우리는 MRI를
통해 스핀이라는 양자 현상을 일상에서 접한다. 스핀에 대한 이야기를 본격적으로 하기 전에, 먼저 MRI의
원리를 간단히 알아보자.
사람은
체중의 약 60퍼센트가 물이다. 물은 수소와 산소 원자로 이루어져 있다. 이 중 수소 원자의 원자핵은 양성자인데, 스핀을 갖고 있어 자석의
성질을 띤다. MRI 사진을 찍는 의료장비에는 강한 자기장을 만들어 내는 자석이 있다. 그 자기장
안에 사람이 들어가면, 우리 몸 속 수소 원자핵의 자석 스핀이 자기장 방향으로 정렬한다. 나란히 정렬된 자석 스핀들은 특정 주파수로 세차운동을
하는데, 세차운동의 주파수는 각 수소 원자가 위치한 부위의 자기장 크기와 그 주변 환경에 따라 달라진다. 이런 상황에서 세차운동의 주파수와 같은
주파수의 전자기파를 외부에서 가하면, 자석 스핀은 공명현상을 일으켜 외부에서 들어온 전자기파의 에너지를 흡수하거나 방출한다. 자기공명영상은 이런
에너지의 흡수와 방출 패턴을 측정하여 컴퓨터로 재구성한 것이다.
간단히
정리하면, MRI에
찍힌 사진이란, 자기장 속에서 세차운동을 하는 수소 원자핵의 자기공명 분포를 측정한 이미지라고 할 수 있다. 뼈나 혈관 등 인체 조직마다
존재하는 물의 양이 다르고, 수소 원자의 밀도도 조직에 따라 차이가 난다. 결과적으로 수소 원자 밀도의 분포에 따라 명암이 다르게 나타나게
되고, 이렇게 조합된 MRI이미지는
우리 몸 속 생체 조직의 모습을 그대로 보여준다.
|
|
|
앞에서
자석 스핀이 세차운동을 한다고 했는데, 세차운동은 회전하는 팽이에서 쉽게 볼 수 있다. 일반적인 물체는 팽이의 꼭지처럼 뾰족한 모서리로는 서
있을 수 없다. 세우자마자 중력의 힘에 의해 곧바로 넘어진다. 하지만 회전하는 팽이는 넘어지지 않는데, 그 이유는 회전관성 때문이다. 앞선 글
[원심력은 가짜 힘]에서 관성의 법칙, 즉 뉴턴의 관성계에서는 외부의 힘이 가해지지 않으면 물체는 정지 상태를 유지하거나 일정한 속도로 움직이는
상태를 유지한다고 설명했다. 일정한 축을 기준으로 회전하는 물체의 운동에서도 비슷한 관성의 법칙이 있다. 중력 방향에 평행한 축을 중심으로
회전하는 팽이는 꼿꼿이 서서 거의 흔들림 없이 회전한다. 그런데 회전축의 방향이 조금이라도 기울어지면 중력에 의한 회전력이 생기면서 팽이의
회전축 방향이 중력 방향을 중심으로 빙글빙글 돌게 되는데, 이렇게 회전축이 도는 팽이의 운동을 세차운동이라고 한다.
앞선
글 [자석은 왜 철을 끌어당길까?]에서, 자기장에 자석의 N극 또는 S극이 걸쳐지게 되면 자석이 힘을 받는다고 했다. N극은 자기장의 흐름
방향으로, S극은 그 반대 방향으로 힘을 받기 때문에, 자석의 S-N 방향이 자기장의 흐름과 평행할 때는, 팽이가 중력의 방향과 일치할 때처럼,
자석은 아무 흔들림 없이 정지해 있을 수 있다. 그런데 여기서 자석의 S-N 방향이 자기장의 방향과 어긋나게 되면, 팽이와 마찬가지로 자석도
자기장에 의한 회전력을 받아서 세차운동을 한다. 이때 자석의 세차운동 주파수와 같은 주파수의 전자기파가 가해지면 에너지의 흡수와 방출이 커지는
현상이 생긴다. 이것이 바로 MRI 이미지에 찍힌 자기공명이다.
N극과
S극이 있는 막대 자석은 방향이 분명하게 정해져 있다. S극에서 N극 방향으로 줄을 그으면, 방향을 가리키는 화살표나 나침반으로 쓸 수 있다.
자기장의 방향과 평행한 화살표 혹은 반대 방향의 화살표, 또는 자기장에 수직인 화살표 등 모든 방향을 측정해서 명확하게 알 수 있다. 그런데
우리는 앞선 글 [불확정성의 원리]에서 돌이나 사과와 같이 커다란 입자는 ‘측정된 물체’의 위치와 그 물체를 ‘대표하는 점’의 위치를 구분할
필요가 없지만, 전자처럼 작은 입자의 경우, 그 위치가 정확히 정해지지 않는다는 것을 보았다. 돌이나 사과와 마찬가지로 길이가 10센티미터인
막대 자석은 자기장과 이루는 각도를 분명히 정할 수 있다. 그렇다면 원자 크기, 또는 그보다 작은 자석의 방향은 결정할 수 있을까?
1922년
오토 슈테른과 발터 게를라흐는 자석 성질을 띤 원자의 자화 방향, 즉, 원자 막대 자석의 방향을 결정하는 실험을 고안하여 실행하였다. 몇 개의
슬릿을 통과시켜 만든 은 원자들의 흐름이, 균일하지 않은 자기장을 통과하여 감광판 스크린으로 향하게 했다. 은 원자도 양성자와 같은 스핀 자석의
성질이 있어 은 원자의 흐름은 자기장에 의해 갈라지는 현상이 나타난다. 균일한 자기장에서는 막대 자석이 세차운동만 하고 알짜 힘을 받지 않아
원자 흐름의 경로가 변하지 않는다. 하지만 불균일한 자기장에서는 막대 자석의 N극과 S극에 작용하는 힘이 서로 다르기 때문에, 은 원자 흐름의
경로가 어느 한쪽으로 휘어지게 된다. 여기서 휘어진 경로의 크기와 방향은 자기장의 불균일 정도에 비례하고, 또 원자 막대 자석의 방향과 자기장
사이의 각도에 따라 달라진다.
슈테른과
게를라흐는 어느 한 쪽으로 방향성을 띠지 않은 은 원자의 막대 자석을 불균일한 자기장으로 보낸다면, 막대 자석의 방향이 자기장 방향에 대해 모든
방향으로 골고루 분포할 것이고 각 막대 자석의 방향에 따라 휘어진 경로도 모두 다를 것이라고 추정했다. 그래서 감광판 스크린에 부딪힌 원자의
위치는 막대 자석과 자기장의 각도에 따라 균일하게 퍼진 모양이 나올 것이라고 예상했다. 앞선 글 [불확정성의 원리]에서 얘기한 대로 은 원자의
스핀 자석의 크기는 0.1나노미터 정도로 작기 때문에 그 위치를 정확히 측정하기는 쉽지 않을 수 있다. 비록 위치 측정이 쉽지 않다고 해도 그
자석의 방향을 정하지 못하는 것은 아니라고 생각했다.
그러나
정작 실험 결과는 슈테른-게를라흐의 예상과 달리 감광판의 은 원자 위치는 연속적인 분포가 아니라 위와 아래로 갈라진 두 개의 점으로 나타났다.
은 원자의 막대 자석은 3차원 공간의 모든 방향을 향하는 것이 아니고 자기장의 방향과 같은 방향으로 평행하거나 반대 방향으로 평행한 두 개의
상태만 존재한다는 의미를 나타내는 결과였다. 우리가 직관적으로 알고 있는 화살표와 같은 방향의 개념을 뒤집는 실험이었다. 원자 크기에서는 위치
측정의 불확정성이 있는 것처럼 자석의 방향에 대해서도 뭔가 다른 개념이 필요하게 된 것이다.
슈테른과
게를라흐의 실험은, 원자 막대 자석의 방향은 측정을 위해 걸어준 자기장의 방향에 대한 크기만 알 수 있고 그 크기는 불연속적이라는 결과를 확인해
주었다. 원자 크기에서는 자석의 방향도 뉴턴 시대의 개념과 다르다는 것이었다. 3차원 공간에서 사방팔방 어느 쪽이든 방향을 정확히 정할 수
있다고 생각했는데, 실제 원자 막대 자석의 방향을 측정해 보면 걸어준 자기장의 방향 외에는 측정이 불가능했다. 그렇다면 원자 막대 자석은 우리가
눈으로 확인할 수 있는 커다란 막대 자석과 어떻게 다른 것일까? 그리고 원자의 자석 성질은 어디서 나오는 것일까?
앞선
글 [자석은 왜 철을 끌어당길까?]에서 전류가 흐르는 솔레노이드 코일은 원통 모양 자철석 자석과 같은 형태의 자기장을 만든다고 했다. 전하를 띤
전자가 원자핵 주변을 도는 모양은 원형 코일의 도선을 따라 흐르는 전류에 의해 만들어진 자기장을 연상시킨다. 하지만 앞선 글 [물질파]에서
원자핵 주변의 전자는 입자로서 회전운동을 한다기보다 정상파 파동을 만드는 물질파로 해석해야 한다고 했다. 더 이상 원형 코일의 전류로 볼 수
없다는 말이다. 한 발짝 더 나아가 생각해 보면, 원자의 자석 성질의 근원은 원자 핵이나 전자 입자의 운동이 아니라 핵과 전자의 스핀에 있다고
짐작할 수 있다.
현재까지의
측정 결과에 따르면 입자로서의 전자는 전하 e, 스핀 1/2인 크기가 없는 점 입자다. 만일 전자 입자의 크기가 유한하다면 그 모양은 구 형태일
것이다. 왜냐하면 어떤 방향으로 충돌을 해도 방향에 따른 차이를 보인 적이 없기 때문이다. 구 모양의 전자가 막대 자석처럼 N-S극을 가지려면,
코일 모양의 회로에 흐르는 전류가 필요하다. 뉴턴 시대의 관점에서 보면, 구 모양의 전하가 회전을 하면 솔레노이드 형태의 자석을 만들 수 있다.
회전하는 구 모양의 전하가 전자의 스핀 자석 성질을 만든다는 아이디어는 언뜻 보면 그럴 듯하다. 그러나 회전하는 구 모양의 전하는 얼마 가지
못해 금방 정지하고 만다. 그에 반해 전자의 스핀 자석은 영원히 변하지 않고 그 성질을 유지한다.
전하를
띠지 않는 구 모양의 물체는 회전 운동을 유지할 수 있다. 외부의 회전력이 없으면 각 운동량이 보존된다는 각운동량 보존법칙으로도 이해할 수
있다. 그런데 전하를 띤 물체가 회전을 한다면 상황이 다르다. 원운동을 하는 전하는 각 점에서 원의 중심을 향하는 방향으로 가속 운동을 한다.
앞선 글 [빛의 근원]에서 전하를 띤 입자가 가속 운동을 할 때 전자 주변에 전기장과 자기장의 파동이 만들어지고 그 전자기파는 공간 속으로 퍼져
나간다고 했다. 가속 운동을 하는 전하가 만들어 낸 전자기파의 에너지와 운동량은 회전운동의 속력을 줄이는 방향으로 작용한다. 물체의 회전 운동
에너지가 전자기파 에너지로 방출되면서 운동 에너지가 고갈된다. 결국 회전하는 구 모양의 전하는 정지하게 된다. 그렇다면 영원불멸의 스핀 자석의
성질은 어디서 나오는 걸까?
스핀이라는
이름은 전자의 ‘영원불멸의 회전운동’을 표현하기 위해 만들어진 용어다. 이미 설명했듯이 실공간에서 영원히 회전하는 전하 입자는 존재하지 않는다.
전자의 자석 성질은 분명 원형 코일과 같이 회전하는 전하가 필요하지만 실공간에서 회전하는 전하는 존재할 수 없다는 모순을 해결하려면 새로운
개념이 필요하다. 크기가 없는 점 속에 숨어있는 공간이 있어 그 안에서 회전하는 전하가 있다고 상상해 보면 어떨까? 얼핏 보면 말이 안 되는 것
같지만, 차근차근 왜 이런 상상이 가능한지 한 번 따라가 보자.
크기가
없는 공간을 생각하기 전에, 우선 우리가 살고 있는 3차원 공간에 대해 생각해보자. 유클리드 기하학에서 3차원 공간의 점은 크기와 방향을 갖는
벡터로 표현된다. 3차원 직교좌표에서 x-축, y-축, z-축 방향을 나타내는 단위 벡터 i, j, k에 각 방향의 크기 ax, ay,
az라고 하면, 공간의 한 점을 나타내는 벡터 a의 크기는 피타고라스 정리에 따라 으로
표현된다. 3차원 공간에서의 반경 a인 구 또는 원 모양은 누구나 쉽게 상상할 수 있다.
크기가
없는 공간은 a=0 인 공간이다. 을
만족하는 실수의 해는 ax=ay=az=0
밖에 없다. 실공간의 점 속에는 아무런 자유도가 없고 아무 것도 움직일 수 없다.
다시
돌아와, 크기가 없는 공간에 대한 아이디어는 파울리가 처음으로 제시하였다. 파울리는 슈테른과 게를라흐 실험을 통해 측정된 전자의 스핀 자석의
상태가 두 개밖에 없다는 것에 주목하여, 스핀의 상태를 표시하기 위한 2차원 복소수 행렬을 제안했다. 이 복소수 행렬은 파울리 행렬이라고 이름이
붙여졌는데, 후에 아주 재미있는 성질이 숨어 있다는 것이 밝혀졌다. 처음에는 단순히 수학적으로 3개의 독립적인 σ1, σ2, σ3의 기저(basis)
행렬이라고만 생각했다. 그런데 이 행렬의 고유벡터가 마치 3차원의 x, y, z 방향에 대응하는 성질이 있다는 것을 알게 되었다. 그러면서 이
행렬을 σx, σy, σz로 달리 표현하여, 실공간에서 방향을 나타내는 단위 벡터 i, j, k 대신에, 복소수 공간에서 a = axσx +
ayσy +
azσz 라는
새로운 벡터를 상상하면, 실공간에서 크기는 ‘0’이면서 스핀 공간에서는 회전 운동이 가능할 수 있다.
|
2차원
복소수 행렬로 표현되는 스핀 공간은 직관적으로 이해하기가 쉽지 않다. 그렇지만 실제로 2차원 복소수 행렬 공간과 우리가 살고 있는 3차원 실공간
사이에는 신기한 연결고리가 존재한다. 우리가 경험적으로 측정할 수 있는 현상은 3차원 공간에서 일어나고 있지만, 그 근원은 2차원 스핀 공간에
있기 때문이다. 3차원 공간에 퍼진 원자 막대 자석의 자기장이, 전자의 스핀에 그 근원이 있다는 것이 바로 두 공간의 연결고리다. 겉보기에는
상관이 없어 보이는 스핀 공간과 3차원 공간은 물체의 운동이 빛의 속력에 접근하는 상대론적인 영역에 가면 서로 섞이게 된다. 앞선 글 [자석은
왜 철을 끌어당길까?]에서 움직이는 전하의 상대성 효과가 바로 자기장의 힘이라고 언급하면서 자기력의 근원이 아인슈타인의 특수상대성 이론에
연관되어 있는 것을 보았다. 이렇게 상대성 이론에서 스핀 공간과 3차원 공간은 필연적으로 얽히게 된다.
양자의
세계는 우리가 직관적으로 이해할 수 있는 범위를 벗어난 현상들을 품고 있다. 양자의 특징 중에는 여러 입자가 하나의 파동처럼 행동하는 현상이
있다. 이런 현상을 거시적인 양자 현상이라고 하는데 양자의 효과지만 거시적인 파동의 성질로 발현되어 측정이 가능하다. 다음 글에서는 집단적
현상으로 나타나는 거시적 양자 상태의 파동성에 대해 얘기하기로 하자.
- 네이버캐스트
댓글 없음:
댓글 쓰기