Menelaus'
Theorem deals with the collinearity of points on each of the three sides
(extended when necessary) of a triangle. It is named for Menelaus of Alexandria.
Statement:
A
necessary and sufficient condition for points
on the respective sides
(or their extensions) of a
triangle
to be collinear is that




where
all segments in the formula are directed segments.
![[asy] unitsize(16); defaultpen(fontsize(8)); pair A=(7,6), B=(0,0), C=(10,0), P=(4,0), Q=(6,8), R; draw((0,0)--(10,0)--(7,6)--(0,0),blue+0.75); draw((7,6)--(6,8)--(4,0)); R=intersectionpoint(A--B,Q--P); dot(A^^B^^C^^P^^Q^^R); label("A",A,(1,1));label("B",B,(-1,0));label("C",C,(1,0));label("P",P,(0,-1));label("Q",Q,(1,0));label("R",R,(-1,1)); [/asy]](https://latex.artofproblemsolving.com/8/7/e/87e7bd56f19d2bc7aa2f8aa9681e95b0d546ef76.png)
Proof:
Draw
a line parallel to
through
to intersect
at
:




![[asy] unitsize(16); defaultpen(fontsize(8)); pair A=(7,6), B=(0,0), C=(10,0), P=(4,0), Q=(6,8), R, K=(5.5,0); draw((0,0)--(10,0)--(7,6)--(0,0),blue+0.75); draw((7,6)--(6,8)--(4,0)); draw(A--K, dashed); R=intersectionpoint(A--B,Q--P); dot(A^^B^^C^^P^^Q^^R^^K); label("A",A,(1,1));label("B",B,(-1,0));label("C",C,(1,0));label("P",P,(0,-1));label("Q",Q,(1,0));label("R",R,(-1,1)); label("K",K,(0,-1)); [/asy]](https://latex.artofproblemsolving.com/2/1/a/21a5638c7f244737d8cab27dad348acb8d143023.png)


Multiplying
the two equalities together to eliminate the
factor, we get:


Proof Using Barycentric coordinates
Disclaimer:
This proof is not nearly as elegant as the above one. It uses a bash-type
approach, as barycentric coordinate proofs tend to be.
Suppose
we give the points
the following coordinates:




Note
that this says the following:



The
line through
and
is given by: 



which yields, after simplification,
![\[-X\cdot (R-1)(P-1)+Y\cdot R(1-P)-Z\cdot PR = 0\]](https://latex.artofproblemsolving.com/f/1/3/f138fb129502bfa2bd23ea25d58a62447fa1ed56.png)
![\[Z\cdot PR = -X\cdot (R-1)(P-1)+Y\cdot R(1-P).\]](https://latex.artofproblemsolving.com/c/e/d/ced00b57885e612b42ef65989dc51362524388e2.png)



![\[P=\frac{(1-P)\cdot PB}{CP}.\]](https://latex.artofproblemsolving.com/0/1/4/014878e5d4964845c637419c2985c4674b4a7929.png)
![\[R=\frac{(1-R)\cdot AR}{BR}\]](https://latex.artofproblemsolving.com/3/a/7/3a7abff5351fd621f2d4d4fc42ed9ee84e1ae21f.png)
![\[Q=\frac{(1-Q)\cdot QC}{QA}.\]](https://latex.artofproblemsolving.com/f/4/4/f448a124aae74987854ffa8a13bd7738f0ef843c.png)
![\[(Q-1)(R-1)(P-1) = \frac{(1-Q)\cdot QC \cdot (1-P) \cdot PB \cdot (1-R) \cdot AR}{QA\cdot CP\cdot BR}\]](https://latex.artofproblemsolving.com/7/a/9/7a9fab55394000872444c52778e20f24fe9f248c.png)

QED
AoPS
댓글 없음:
댓글 쓰기