2014년 2월 7일 금요일

Incenter


Incenter
The incenter I is the center of the incircle for a polygon or insphere for a polyhedron (when they exist). The corresponding radius of the incircle or insphere is known as the inradius.
The incenter can be constructed as the intersection of angle bisectors. It is also the interior point for which distances to the sides of the triangle are equal. It has trilinear coordinates 1:1:1, i.e., triangle center function
 alpha_1=1,
(1)
and homogeneous barycentric coordinates (a,b,c). It is Kimberling center X_1.
For a triangle with Cartesian vertices (x_1,y_1)(x_2,y_2)(x_3,y_3), the Cartesian coordinates of the incenter are given by
 (x_I,y_I)=((ax_1+bx_2+cx_3)/(a+b+c),(ay_1+by_2+cy_3)/(a+b+c)).
(2)
The distance between the incenter and circumcenter is sqrt(R(R-2r)), where R is the circumradius and r is the inradius, a result known as the Euler triangle formula.
The incenter lies on the Nagel line and Soddy line, and lies on the Euler line only for an isosceles triangle. The incenter is the center of the Adams' circleConway circle, and incircle. It lies on the Darboux cubic,M'Cay cubicNeuberg cubicorthocubic, and Thomson cubic. It also lies on the Feuerbach hyperbola.
For an equilateral triangle, the circumcenter Otriangle centroid Gnine-point center Forthocenter H, and de Longchamps point Z all coincide with I.
The distances between the incenter and various named centers are given by
IF=r
(3)
IG=sqrt(-(a^3-2ba^2-2ca^2-2b^2a-2c^2a+9bca+b^3+c^3-2bc^2-2b^2c)/(9(a+b+c)))
(4)
IGe=(4ILr^2)/(a^2-2ab+b^2-2ac-2bc+c^2)
(5)
IH=sqrt(2r^2+4R^2-S_omega)
(6)
IK=1/(a^2+b^2+c^2)sqrt(-1/((a+b+c))(abc(a^4-2ba^3-2ca^3+2b^2a^2+2c^2a^2+bca^2-2b^3a-2c^3a+bc^2a+b^2ca+b^4+c^4-2bc^3+2b^2c^2-2b^3c)))
(7)
IL=1/r(sqrt(a^4-ba^3-ca^3+bca^2-b^3a-c^3a+bc^2a+b^2ca+b^4+c^4-bc^3-b^3c))
(8)
IM=(2(a^2+b^2+c^2)IK)/(a^2-2ab+b^2-2ac-2bc+c^2)
(9)
IN=(2DeltaOI^2)/(abc)
(10)
INa=3IG
(11)
IO=sqrt(R(R-2r))
(12)
=(sqrt(abc(a^3-a^2b+b^3-a^2c+3abc-b^2c-ac^2-bc^2+c^2)))/(4Delta)
(13)
ISp=3/2IG,
(14)
where F is the Feuerbach pointG is the triangle centroidGe is the Gergonne pointH is the orthocenterK is the symmedian pointL is the de Longchamps pointM is the mittenpunktN is the nine-point centerNa is the Nagel pointSp is the Spieker centerr is the inradiusR is the circumradiusDelta is the triangle area, and S_omega is Conway triangle notation.
The following table summarizes the incenters for named triangles that are Kimberling centers.
triangleKimberlingincenter
anticomplementary triangleX_8Nagel point
circumnormal triangleX_3circumcenter
circum-orthic triangleX_4orthocenter
circumtangential triangleX_3circumcenter
contact triangleX_(177)first mid-arc point
Euler triangleX_(946)midpoint of X_1 and X_4
excentral triangleX_(164)incenter of excentral triangle
extangents triangleX_(40)Bevan point
first Morley triangleX_(356)first Morley center
first Yff circles triangleX_1incenter
inner Napoleon triangleX_2triangle centroid
intangents triangleX_1incenter
Lucas central triangleX_(1151)isogonal conjugate of X_(1131)
medial triangleX_(10)Spieker center
orthic triangleX_4orthocenter
outer Napoleon triangleX_2triangle centroid
reference triangleX_1incenter
second Yff circles triangleX_1incenter
Stammler triangleX_3circumcenter
tangential mid-arc triangleX_1incenter
tangential triangleX_3circumcenter
The incenter and excenters of a triangle are an orthocentric system.
The circle power of the incenter with respect to the circumcircle is
 p=(a_1a_2a_3)/(a_1+a_2+a_3)
(15)
(Johnson 1929, p. 190).
If the incenters of the triangles DeltaA_1H_2H_3DeltaA_2H_3A_1, and DeltaA_3H_1H_2 are X_1X_2, and X_3, then X_2X_3 is equal and parallel to I_2I_3, where H_i are the feet of the altitudes and I_i are the incenters of thetriangles. Furthermore, X_1X_2X_3, are the reflections of I with respect to the sides of the triangle DeltaI_1I_2I_3 (Johnson 1929, p. 193).

댓글 없음: