2019년 2월 7일 목요일

Conical Frustum 절두체 부피

ConicalFrustumGraphicFrustum
A conical frustum is a frustum created by slicing the top off a cone (with the cut made parallel to the base). For a right circular cone, let s be the slant height and R_1 and R_2 the base and top radii. Then
 s=sqrt((R_1-R_2)^2+h^2).
(1)
The surface area, not including the top and bottom circles, is
A=pi(R_1+R_2)s
(2)
=pi(R_1+R_2)sqrt((R_1-R_2)^2+h^2).
(3)
The volume of the frustum is given by
 V=piint_0^h[r(z)]^2dz.
(4)
But
 r(z)=R_1+(R_2-R_1)z/h,
(5)
so
V=piint_0^h[r(z)]^2dz
(6)
=piint_0^h[R_1+(R_2-R_1)z/h]^2dz
(7)
=1/3pih(R_1^2+R_1R_2+R_2^2).
(8)
This formula can be generalized to any pyramid by letting A_i be the base areas of the top and bottom of the frustum. Then the volume can be written as
 V=1/3h(A_1+A_2+sqrt(A_1A_2)).
(9)
The area-weighted integral of z over the frustum is
=piint_0^hz[r(z)]^2dz
(10)
=1/(12)pih^2(R_1^2+2R_1R_2+3R_2^2),
(11)
so the geometric centroid is located along the z-axis at a height
z^_=(
(12)
=(h(R_1^2+2R_1R_2+3R_2^2))/(4(R_1^2+R_1R_2+R_2^2))
(13)
(Eshbach 1975, p. 453; Beyer 1987, p. 133; Harris and Stocker 1998, p. 105). The special case of the cone is given by taking R_2=0, yielding z^_=h/4.




Wolfram

댓글 없음: