- <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}=\left|s^{2}-r^{2}\right|} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}=\left|s^{2}-r^{2}\right|} }</annotation></semantics></math>
-
-
그림 1. 방멱의 도해
방멱의 정리]
현에 대한 방멱의 정리]
- 원 O의 두 현 AB와 CD가 원 내부의 한 점 P에서 만날 때, 다음이 성립한다.
- <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PC}}\times {\overline {PD}}} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PC}}\times {\overline {PD}}} }</annotation></semantics></math>
- 증명
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\triangle PAD} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\triangle PAD} }</annotation></semantics></math>와 <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\triangle PCB} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\triangle PCB} }</annotation></semantics></math>에서
- <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\angle PDA=\angle PBC} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\angle PDA=\angle PBC} }</annotation></semantics></math> (호 AC에 대한 원주각)
- <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\angle PAD=\angle PCB} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\angle PAD=\angle PCB} }</annotation></semantics></math> (호 BD에 대한 원주각)
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\triangle PAD\sim \triangle PCB} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\triangle PAD\sim \triangle PCB} }</annotation></semantics></math>
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\therefore {\overline {PA}}:{\overline {PD}}={\overline {PC}}:{\overline {PB}}} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\therefore {\overline {PA}}:{\overline {PD}}={\overline {PC}}:{\overline {PB}}} }</annotation></semantics></math> (대응변의 닮음비)
따라서, <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PC}}\times {\overline {PD}}} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PC}}\times {\overline {PD}}} }</annotation></semantics></math>
할선에 대한 방멱의 정리
- 원 O의 두 현 AB와 CD가 원 외부의 한 점 P에서 만날 때, 다음이 성립한다.
- <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PC}}\times {\overline {PD}}} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PC}}\times {\overline {PD}}} }</annotation></semantics></math>
- 증명
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\triangle PBC} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\triangle PBC} }</annotation></semantics></math>와 <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\triangle PDA} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\triangle PDA} }</annotation></semantics></math>에서
- <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\angle PBC=\angle PDA} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\angle PBC=\angle PDA} }</annotation></semantics></math> (호 AC에 대한 원주각)
- <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\angle BPD} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\angle BPD} }</annotation></semantics></math>는 공통
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\triangle PBC\sim \triangle PDA} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\triangle PBC\sim \triangle PDA} }</annotation></semantics></math>
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\therefore {\overline {PB}}:{\overline {PD}}={\overline {PC}}:{\overline {PA}}} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\therefore {\overline {PB}}:{\overline {PD}}={\overline {PC}}:{\overline {PA}}} }</annotation></semantics></math> (대응변의 닮음비)
따라서, <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PC}}\times {\overline {PD}}} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PC}}\times {\overline {PD}}} }</annotation></semantics></math>
접선에 대한 방멱의 정리
- <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PT}}^{2}} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PT}}^{2}} }</annotation></semantics></math>
- 증명
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\triangle PAT} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\triangle PAT} }</annotation></semantics></math>와 <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\triangle PTB} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\triangle PTB} }</annotation></semantics></math>에서
- <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\angle PTA=\angle PBT} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\angle PTA=\angle PBT} }</annotation></semantics></math> (접선과 현이 이루는 각의 크기는 그 각의 내부에 있는 호에 대한 원주각의 크기와 같다)
- <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\angle P} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\angle P} }</annotation></semantics></math>는 공통
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\triangle PAT\sim \triangle PTB} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\triangle PAT\sim \triangle PTB} }</annotation></semantics></math>
<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {\therefore {\overline {PA}}:{\overline {PT}}={\overline {PT}}:{\overline {PB}}} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {\therefore {\overline {PA}}:{\overline {PT}}={\overline {PT}}:{\overline {PB}}} }</annotation></semantics></math> (대응변의 닮음비)
따라서, <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PT}}^{2}} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PT}}^{2}} }</annotation></semantics></math>
방멱의 정리의 역]
- 네 점이 한 원 위에 있을 조건
- 두 선분 AB와 CD 또는 그 연장선의 교점 P에 대해서
- <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PC}}\times {\overline {PD}}} }"><semantics><annotation encoding="application/x-tex">{\displaystyle \mathrm {{\overline {PA}}\times {\overline {PB}}={\overline {PC}}\times {\overline {PD}}} }</annotation></semantics></math>
- 가 성립하면, 네 점 A, B, C, D는 한 원 위에 있다.
댓글 없음:
댓글 쓰기