각의 삼등분 문제는 임의의 각을 삼등분하는 문제로, 임의의 크기의 각을 작도하는 사람이 자신이 의도한 크기의 각을 정확히 작도할 수 없기 때문에 일반적으로 눈금 없는 자와 컴퍼스를 이용하여 작도할 수 없다. 종이를 접거나 특수한 도구를 사용하여 주어진 각을 삼등분하는 각을 만들 수는 있지만, 이것은 눈금없는 자와 컴퍼스를 이용한다는 문제의 조건에 어긋난다.
이 문제는 프랑스의 수학자 피에르 방첼(Pierre Wantzel)이 1837년에 60도를 삼등분하는 작도가 불가능함을
보임으로써 끝이 났다. 이것은 주어진 어떤 각도 삼등분할 수 없다는 뜻이 아니다. 직각을 비롯한 무한히 많은 각을 자와 컴퍼스만으로 삼등분할 수
있지만, 한편 자와 컴퍼스만으로 삼등분할 수 없는 각 또한 무수히 많다는 뜻이다.
임의의 각은 삼등분이 불가능하며, 특정 각의 경우에도 상술했듯 삼등분이 가능한 각과 불가능한 각이 있다. 삼등분이 가능한 각은 다음과 같다.
- 직각은 삼등분 작도를 할 수 있다.
- 삼등분 작도를 할 수 있는 각의 2배각과 절반각도 삼등분 작도가 가능하다.
- 역으로, 삼등분 작도를 할 수 없는 각의 2배각과 절반각도 삼등분 작도를 할 수 없다.
- 삼등분 작도를 할 수 있는 각의 3배각도 삼등분 작도를 할 수 있으나, 1/3 크기의 각은 삼등분 작도를 할 수 없을 경우도 있다.
(예: 직각 → 30도)
- 역으로, 삼등분 작도를 할 수 없는 각의 1/3 크기의 각은 삼등분 작도를 할 수 없으나, 3배각은 삼등분 작도를 할 수 있을 경우도 있다.
이 조건에 의하면 삼등분 작도가 가능한 각은 직각을 포함하여 45도, 22.5도, 11.25도, 135도, 67.5도, 33.75도 등이 있다.
작도 불가능성[편집]
피에르 방첼이 처음 증명했다.
3등분을 하는 다른 방법[편집]
작도의 조건을 만족하지 않는 방법으로는 각의 3등분을 할 수 있다.
종이접기[편집]
보조 곡선을 이용하는 법[편집]
달팽이꼴을 이용하여 3등분을 할 수 있다.
댓글 없음:
댓글 쓰기